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Abstract

In this article, we introduce an extended (α, c)-interpolative metric space and present an associated fixed-
point theorem. With our main theorem, we present the existence of a solution for a fractal-fractional
differential equation with a power-law kernel. In the end, we analyze the dynamics of the chaotic Rössler
system.
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1. Introduction

The role of fixed points in studying the stability and convergence of dynamical systems is central. These
systems become more complex when being studied using fractional calculus: the traditional calculus is
generalized to include non-integer order derivatives. Since fractional-order systems include memory and
hereditary properties, such models tend to provide a more realistic description of natural and physical
processes. Fixed points behavior changes with this extension, which affects stability conditions and extending
the dynamical phenomena spectrum. The nonlocal nature of fractional derivatives provides a distinct context
to analyze how trajectories approach, repel, or oscillate around fixed points, exploring instances where
dependencies and lagged response are involved and complex [1]-[6].
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Chaotic attractors, known for their sensitivity to initial conditions and intricate geometrical structures,
often coexist with fixed points in dynamical systems. This co-existence becomes even stronger in the
fractional order systems, as the fractional nature of the trajectories is so perceptive of exploring the phase
space. A continuum between order and chaos is shown to exist through the interplay between fixed points
and chaotic attractors, where fixed points act as pivots in chaotic motion. Fractional derivatives introduce
an additional level of complexity, generating paths where trajectories flow into chaotic attractors or into
fixed points near which the trajectories are stabilized. This intricate relationship reveals the nonlinear
dynamics and reveals how fractional order system performs as a bridge between deterministic structures
and randomly behaving systems, opening the path for new modeling approaches to the physical, biological,
and engineering systems [7]-[10].

The fractional order Lorenz system is a fractional extension of the classical Lorenz system, which is an
example that connects the fixed points, fractional calculus and chaotic attractors. There exists a set of three
coupled nonlinear differential equations, the classical Lorenz system, which are chaotic in some parameter
conditions. When the system is extended to fractional-order derivative, the chaos behavior is richer, which
reveals novel dynamics between fixed points and chaos [11]-[13].

In both the classical and fractional versions, fixed points are determined by solving for equilibrium
solutions where the time derivatives vanish. These are the fixed-point steady states of the system. In
the fractional version, however, the stability of these points also depends on the fraction order α, where
0 < α < 1. But the fractional derivatives can introduce memory effects that can induce trajectories to linger
near fixed points for long periods of time, or explore more interesting topologies around them, but diverge,
depending on the value of α.

Figure 1: The behavior of the fractional-order Lorenz system with order α=0.9

Fixed points in the Lorenz system are the equilibrium points where the derivatives of all state variables
vanish. For the Lorenz system, these are calculated by setting:

dx

dt
=
dy

dt
=
dz

dt
= 0.

The equations for the system become:

σ(y − x) = 0 ⇒ y = x,

x(ρ− z)− y = 0 ⇒ x(ρ− z)− x = 0 ⇒ z = ρ− 1,
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xy − βz = 0 ⇒ x2 = βz.

From the above plots, we can notice that:

• Trivial Fixed Point: (0, 0, 0)

– This corresponds to a state where the system is at rest.

• Non-Trivial Fixed Points:

(±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

– These exist only if ρ > 1 (i.e., when the parameter ρ exceeds the critical value).

In the fractional-order system, the fixed points remain the same as in the classical system because they
are defined by the equilibrium conditions, where the time derivatives vanish. However, the stability and
trajectories around these fixed points are influenced by fractional order α, leading to richer dynamics.

In the plotted attractor, the trajectories hover near the vicinity of the non-trivial fixed points:

(±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1),

but never settle due to the chaotic nature of the system. The attractor’s shape shows how the system evolves
around these fixed points in the phase space.

2. A Fixed Point Result

The concept of triangle inequality has evolved over time to accommodate broader mathematical frame-
works. Initially, the classical triangle inequality was introduced in metric spaces, where for any three
points κ, y, z, the inequality d(κ, z) ≤ d(κ, y) + d(y, z) holds. To extend this framework, the b-metric
space [14],[15] was developed, relaxing the standard inequality by introducing a constant s ≥ 1, leading
to d(κ, z) ≤ s.[d(κ, y) + d(y, z)]. Further generalizations led to the extended b-metric space [16], which
replaced the constant s with a variable function θ(κ, z) ≥ 1, yielding d(κ, z) ≤ θ(κ, z).[d(κ, y)+d(y, z)]. This
kind of extension extends the application of fixed point theorems to more general settings and increases the
flexibility of analyzing complex systems.

In very recent times, the classical triangle inequality is extended to more general structures in gener-
alized metric spaces, see, for example, [17]-[22]. Triangle Inequality in a suprametric space[17] in which a
multiplicative term given by the product of intermediate distances appears. It is as follows:

d(κ, y) ≤ d(κ, z) + d(z, y) + ρd(κ, z)d(z, y), where ρ > 0 is a constant.

Very recently, we have another triangle inequality altered, in an (α, c)-interpolative metric space
[23] with another term involving powers of intermediate distances. Specifically, for any κ, y, z ∈ X, the
inequality is expressed as:

d(κ, y) ≤ d(κ, z) + d(z, y) + c[(d(κ, z))α(d(z, y))1−α], where α ∈ (0, 1) and c ≥ 0.

Motivated and inspired by the above generalized triangle inequalities and distance spaces, we introduce
below:

Definition 2.1. Let X be a non-empty set and θ : X × X → [1,∞). A function d : X × X → [0,∞) is
called an extended (α, c)-interpolative metric space if for all κ, y, z ∈ X it satisfies

1. d(κ, y) = 0 iff κ = y;

2. d(κ, y) = d(y,κ);
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3. there exists an α ∈ (0, 1) and c ⩾ 0 such that

d(κ, y) ⩽ θ(κ, y)[d(κ, z) + d(z, y)] + c
[
(d(κ, z))α(d(z, y))1−α

]
.

Let (X, d) be an extended (α, c)-interpolative metric space. A sequence {κn} in X is said to be:

• “Cauchy” if the distance d(κn,κm) between two terms of the sequence approaches zero as n,m→ ∞.

• “convergent” if there exists an element κ ∈ X such that the distance d(κn,κ) approaches zero as
n→ ∞, denoted by limn→∞ κn = κ.

Furthermore, the extended (α, c)-interpolative metric space (X, d) is said to be “complete” if every Cauchy
sequence in the space converges to a point within X. These concepts highlight the fundamental character-
istics of sequences and their relationship to the completeness of the space.

Example 2.2. Let X = [0, 1). Define d : X ×X → [0,∞) and θ : X ×X → [1,∞) as follows:

d(κ, y) = |κ − y|4;∀κ, y ∈ X,

and θ(κ, y) = 1 + |κ − y|,∀κ, y ∈ X. Then d is an extended (1/3, 14)-interpolative metric space.

Example 2.3. Let X = R, define d : X ×X → [0,∞) and θ : X ×X → [1,∞) as follows:

d(κ, y) =
{

|κ − y|; if |κ − y| ≤ 1,
|κ − y|2; if |κ − y| > 1.

and θ(κ, y) = 1 + |κ − y|, ∀κ, y ∈ X .

Then d is extended (1/2, 1)-interpolative metric space.

Example 2.4. Let X be the space of all sequences of numbers. Let κ = {κi}i≥1, and y = {yi}i≥1 be
elements of X. Define d : X ×X → [0,∞) and θ : X ×X → [1,∞) as follows:

d(κ, y) =
∞∑
i=1

|κi − yi|2

1 + |κi − yi|21
; and θ(κ, y) = 1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

such that |κi − yi| in bounded, so |κi−yi|2
1+|κi−yi2 ⩽ 1 ensuring convergence of the sum.

It is immediate that d(κ, y) ≥ 0, d(κ, y) = 0 ⇔ κ = y and that d(κ, y) = d(y,κ).
For the generalized triangle inequality, we have

|κi − yi| = |κi − zi + zi − yi|
≤ |κi − zi|+ |zi − yi| .

We can write it as

|κi − yi|2 ⩽ |κi − zi|2 + |zi − yi|2 + 2 |κi − zi| |zi − yi| .

Thus,

|κi − yi|2

1 + |κi − yi|2

⩽
|κi − zi|2

1 + |κi − zi|2
+

|yi − zi|2

1 + |yi − zi|2
+

2 |κi − zi| |zi − yi|(
1 + |κi − zi|2

)(
1 + |zi − yi|2

)
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⩽

(
1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

)(
|κi − zi|2

1 + |κi − zi|2
+

|zi − yi|2

1+ | zi − yi)
2

)
+

2 |κi − zi| |zi − yi|(
1 + |κi − zi|2

)(
1 + |zi − yi|2

)
⩽

(
1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

)(
|κi − zi|2

1 + |κi − zi|2
+

|zi − yi|2

1 + |zi − yi|2

)
+

2 |κi − zi| |zi − yi|√(
1 + |κi − zi|2

)
(1+ | zi − yi|2)

=

(
1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

)(
|κi − zi|2

1 + |κi − zi|2
+

|zi − yi|2

1 + |zi − yi|2

)
+ 2

(
|κi − zi|2

1 + |κi − zi|2

) 1
2
(

|zi − yi|2

1 + |zi − yi|2

) 1
2

⩽

(
1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

)(
|κi − zi|2

1 + |κi − zi|2
+

|zi − yi|2

1 + |zi − yi|2

)
+ c

(
|κi − zi|2

1 + |κi − zi|2

)α(
|zi − yi|2

1 + |zi − yi|2

)1−α

for c > 2 and α = 1
2 .

Finally we can conclude that

∞∑
i=1

|κi − yi|2

1 + |κi − yi|2
≤

(
1 + sup

i⩾1

|κi − yi|2

1 + |κi − yi|2

)( ∞∑
i=1

|κi − zi|2

1 + |κi − zi|2
+

∞∑
i=1

|zi − yi|2

1 + |zi − yi|2

)

+ c

( ∞∑
i=1

|κi − zi|2

1 + |κi − zi|2

)α( ∞∑
i=1

|zi − yi|2

1 + |zi − yi|2

)1−α

,

i.e., d(κ, y) ⩽ θ(κ, y)(d(κ, z) + d(z, y)) + c(d(κ, z))α(d(z, y))1−α.
Thus, (X, d) is an extended (α, c)-interpolative metric space for c > 2 and α = 1

2 ∈ (0, 1).

Remark 2.5. Note that, in general, an extended (α, c)-interpolation metric is not a continuous functional.

Lemma 2.1. Let (X, d) be an extended (α, c)-interpolation metric. If d is continuous, then every convergent
sequence has a unique limit.

Theorem 2.6. Let (X, d) be a complete extended (α, c)-interpolative metric space such that d is a contin-
uous function. Let T : X → X satisfying

d(Tκ, T y) ≤ kd(κ, y), for all κ, y ∈ X, (1)

where k ∈ [0, 1) be such that for each κ0 ∈ X, limn,m→∞ θ (κn,κm) < 1
k , here κn = Tnκ0, n = 1, 2, . . . Then

T has precisely one fixed point ε.

Proof: To start the proof, let us take an arbitrary point κ ∈ X and use it to create a sequence. We assume
that κ0 = x is the first element of the chosen sequence. The following is the definition of the structure of
the created sequence {κn}: κn+1 = Tκn, ∀ n ∈ N. Before going any further with the proof, we inspect and
remove the trivial case: It κn0 = κn0+1 for any n0 ∈ N then κn0 = κn0+1 = Tκn0 . In other words, κn0

constitutes the requisite fixed point of the specified mapping T , so concluding the proof.
For all n ∈ N, we will therefore assume that κn ̸= κn+1 throughout the proof. Finally, we notice

that d (κn,κn+1) > 0 for all n ∈ N. Because of the presumption (1) of the Theorem, we figured out that
d (κn,κn+1) ≤ kd (κn−1,κn), for all n ∈ N.
Taking into account the above inequality, by repetition, we get that

d (κn,κn+1) ≤ knd (κ0,κ1) , ∀ n ∈ N. (2)

By the generalized triangle inequality and (2), for m > n, we get:

d (κn,κm)
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⩽ θ (κn,κm) [d (κn,κn+1) + d (κn+1,κm)] + c
[
(d (κn,κn+1))

α (d (κn+1,κm))1−α
]

⩽ θ (κn,κm) d (κn,κn+1) + θ (κn,κm) d (κn+1,κm) + c
[
(d (κn,κn+1))

α (d(κn+1,κm))1−α
]

⩽ θ (κn,κm) d (κn,κn+1) + θ (κn,κm)
[
θ (κn+1,κm) (d (κn+1,κn+2) + d (κn+2,κm))

+ c
(
(d (κn+1,κn+2))

α (d (κn+2,κm))1−α
)]

+ c
[
(d (κn,κn+1))

α (d (κn+1,κm))1−α
]

= θ (κn,κm) d (κn,κn+1) + θ (κn,κm) θ (κn+1,κm) d (κn+1,κn+2)

+ θ (κn,κm) θ (κn+1,κm) d (κn+2,κm)
+ θ (κn,κm) c

[
(d (κn+1,κn+2))

α(d (κn+2,κm))1−α
]
+ c

[
(d (κn,κn+1))

α(d (κn+1,κm))1−α
]

⩽ θ (κn,κm) d (κn,κn+1) + θ (κn,κm) θ (κn+1,κm) d (κn+1,κn+2)

+ θ (κn,κm) θ (κn+1,κm)
[
θ (κn+2,κm) (d (κn+2,κn+3) + d (κn+3,κm))

+ c
(
(d (κn+2,κn+3))

α(d (κn+3,κm))1−α
) ]

+ θ (κn,κm) c
[
(d (κn+1,κn+2))

α(d (κn+2,κm))1−α
]

+ c
[
(d (κn,κn+1))

α(d (κn+1,κm))1−α
]

⩽ θ (κn,κm) knd (κ0,κ1) + θ (κn,κm) θ (κn+1,κm) kn+1d (κ0,κ1)

+ θ (κn,κm) θ (κn+1,κm) θ (κn+2,κm) kn+2d (κ0,κ1) + θ (κn,κm) θ (κn+1,κm) θ (κn+2,κm) d (κn+3,κm)
+ θ (κn,κm) θ (κn+1,κm) c

[
(d (κn+2,κn+3))

α(d (κn+3,κm))1−α
]

+ θ (κn,κm) c
[
(d (κn+1,κn+2))

α(d (κn+2,κm))1−α
]
+ c

[
(d (κn,κn+1))

α(d (κn+1,κm))1−α
]
.

By recurrent the same method, we will obtain:

d (κn,κm) ⩽ d (κ0,κ1)
∞∑
n=1

kn
n∏
i=1

θ (κi,κm) + c
∞∑
n=1

(d (κn,κn+1))
α(d (κn+1,κm))1−α

n−1∏
i=1

θ (κi,κm) (3)

⩽ d (κ0,κ1)

∞∑
n=1

kn
n∏
i=1

θ (κi,κm) + c(d (κ0,κ1))
α

∞∑
n=1

knα (d (κn+1,κm))1−α
n−1∏
i=1

θ (κi,κm) .

Before continuing proceeding further, we verify that

(d (κn+1,κm))1−α < 1.

For this purpose, we are going to use elementary induction to establish it.
By generalized triangle inequality

d (κn,κn+2) ⩽ θ (κn,κn+2) [d (κn,κn+1) + d (κn+1,κn+2)] + c
[
(d (κn,κn+1))

α(d (κn+1,κn+2))
1−α] . (4)

By taking limits as n→ ∞ in the above inequality and taking the inequality (2) into account, we conclude
that

lim
n→∞

d (κn,κn+2) = 0. (5)

In addition, we have limn→∞ d (κn,κn+3) = 0, by using (5) & following the same pattern as we did to get
(4).
We now assume that our statement’s common case is true, which means we have:

lim
n→∞

d (κn,κn+r) = 0, for some r ∈ N. (6)



Sumati Kumari Panda, Lett. Nonlinear Anal. Appl. 3 (2025), 48-64 54

As a consequence, due to the generalized triangle inequality, we have

d (κn,κn+r+1) ⩽ θ (κn,κn+r+1) [d (κn,κn+r) + d (κn+r,κn+r+1)]+c
[
(d(κn,κn+r))α(d (κn+r,κn+r+1))

1−α] .
Taking into consideration (2) and (6), and applying n→ ∞, we get:

lim
n→∞

d (κn,κn+r+1) = 0.

By using this observation, we come to an end that,
d (κn+1,κm) < 1 and hence (d (κn+1,κm))1−α < 1.
The inequality’s right-hand side (3) might be assessed in light of this fact in the following way:

⩽ d (κ0,κ1)

∞∑
n=1

kn
n∏
i=1

θ (κi,κm) + c(d (κ0,κ1))
α

∞∑
n=1

knα
n−1∏
i=1

θ (κi,κm)

Since, limn,m→∞ θ (κn+1,κm) k < 1, so that the series
∑∞

n=1 k
n
∏n
i=1 θ (κi,κm) converges by ratio test for

each m ∈ N, let

S =

∞∑
n=1

kn
n∏
i=1

θ (κi,κm) ; Sn =

n∑
j=1

kj
j∏
i=1

θ (κi,κm)

similarly,
∞∑
n=1

knα
n−1∏
i=1

θ (κi,κm) also converges.

In summary, {κn} is a Cauchy iterative sequence.
With reference to (X, d) is a complete an extended (α, c)-interpolation metric space, the sequence {κn}
converges to κ∗ ∈ X. We claim that κ∗ is the fixed point of T . Contrarily, suppose that κ∗ is not the fixed
point of T . Thus d (κ∗, Tκ∗) > 0. Note that d (κn+1, Tκ∗) = d (Tκn, Tκ∗) ⩽ kd (κn,κ∗)

Applying “ lim sup ” on each side, we get d (κ∗, Tκ∗) ⩽ kd (κ∗,κ∗) = 0, which is a contradiction as we
assumed that d (κ∗, Tκ∗) > 0. Thus, κ∗ is the fixed point of T . Moreover, (1) makes it simple to determine
if the fixed point is unique.

3. Existence of Unique Solution to the Fractal-Fractional Operator

Definition 3.1. [24][25] Let g(γ) be a differentiable function on the interval (a, b), defined under fractional
order α and fractal order β. The Fractal-Fractional Derivative in the Riemann–Liouville sense with a
power law kernel is given by:

FF−RL
P Dα,β

γ g(γ) =
1

Γ(m− α)

dβ

dγβ

∫ γ

a
g(κ)(γ − κ)m−α−1 dκ, (7)

where:

• The Gamma function Γ(z) is defined as:

Γ(z) =

∫ ∞

0
tz−1e−t dt, z > 0.

• The fractional order α satisfies m− 1 < α ≤ m, ensuring fractional differentiation.

• The fractal order β lies in the range 0 < m− 1 < β ≤ m, accounting for fractal characteristics.

• The operator dβ

dγβ
applies the fractal differentiation rule:

dβg(γ)

dγβ
= lim

γ→κ

g(γ)− g(κ)
γβ − κβ

. (8)
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This derivative uniquely incorporates both memory effects and scaling dynamics characteristic of fractals,
making it an essential tool for modeling nonlocal and complex systems. It captures phenomena where the
interplay between fractional memory and fractal geometry is fundamental.

Definition 3.2. [24][25] Let g(γ) be a function differentiable on (a, b) with fractional order α and fractal
order β. The fractal-fractional derivative in the Caputo sense with a power law kernel is defined as:

FF−P
P Dα,β

γ g(γ) =
1

Γ(m− α)

∫ γ

a

dβg(κ)
dκβ

(γ − κ)m−α−1 dκ, (9)

where:

• m− 1 < α ≤ m is the fractional order,

• 0 < m− 1 < β ≤ m is the fractal order,

• The fractal differentiation operator is:

dβg(κ)
dκβ

= lim
γ→κ

g(γ)− g(κ)
γβ − κβ

.

This definition extends the classical Caputo derivative by integrating fractal scaling, allowing for the mod-
eling of systems with both memory and fractal properties.

Definition 3.3. [24][25] The fractal-fractional integral of a function g(γ) with fractional order α and
fractal order β, using a power law kernel, is defined as:

FF−P
0 Iαγ g(γ) =

β

Γ(α)

∫ γ

a
κα−1u(κ)(γ − κ)α−1 dκ, (10)

Definition 3.4. [24][25] The numerical solution for a nonlinear fractional-order ordinary differential equa-
tion in the Caputo sense is expressed as:

Cα0 z(γ) = f(γ, z(γ)), z(0) = z0, (11)

where Cα0 denotes the Caputo fractional derivative.
The corresponding numerical algorithm for solving (11) can be found in [26] for circuit based:

zn+1 = z0 +
1

Γ(α)

n∑
j=0

[
hαf(γj ,z(γj))
α(α+1) {(n+ 1− j)α(n+ 2− r + α)− (n− j)α(n+ 2− r + 2α)}

−hαf(γj−1,z(γj−1))
α(α+1)

{
(n+ 1− j)α+1 − (n− j)α(n+ 2− r + α)

} ]
, (12)

where:

• h is the step size,

• Γ(α) is the Gamma function,

• γj = jh represents discrete time steps.

For fractal-fractional derivative associated results, one can refer [26], [27] and [28]. The scheme precisely
approximates fractional order system dynamics, which incorporate memory effects present in fractional
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calculus. The system of ordinary differential equations in (13) models the dynamics of an integer-order
chaotic system with three state variables: κ1, y1, and z1. The equations are defined as:

dκ1
dγ = −y1 − z1,
dy1
dγ = κ1 + ay1,
dz1
dγ = b+ z1(κ1 − c).

(13)

The terms a, b, and c are non-negative parameters that directly control the system’s chaotic dynamics. This
is a nonlinear coupled system, containing linear and nonlinear interactions described by these equations.
The initial conditions for this system are specified as:

κ1(0) = κ∗
1 , y1(0) = y∗1, z1(0) = z∗1, (14)

here, the initial values of the state variables are κ∗
1 , y

∗
1, and z∗1.

A Fractal-Fractional differential operator with a power law kernel is applied to generalize the system. This
transforms the integer-order chaotic system into a Fractal-Fractional order chaotic system, as defined below:

FFP
0 Dα,β

γ = −y1 − z1,
FFP
0 Dα,β

γ = κ1 + ay1,
FFP
0 Dα,β

γ = b+ z1(κ1 − c).

(15)

In this formulation:

• FFPDα,β
0 denotes the Fractal-Fractional differential operator with a power-law kernel having fractional

order α and fractal order β,

• 0 < α, β ≤ 1, representing the orders of the fractional and fractal components.

It generalizes the dynamics by introducing memory and the fractal scaling effects into the dynamics, im-
proving the complexity of the description of complex systems.
To establish the existence and uniqueness of the fractal-fractional model, the system described in (15) can
be reformulated using the Fractal-Fractional Riemann–Liouville derivative as follows:

RL
0 Dβ

γ (κ1(γ)) = βγβ−1ψ1(γ,κ1),

RL
0 Dβ

γ (y1(γ)) = βγβ−1ψ2(γ, y1),

RL
0 Dβ

γ (z1(γ)) = βγβ−1ψ3(γ, z1).

(16)

where RL
0 Dβ

γ denotes the Riemann–Liouville fractal-fractional operator.
The functions ψ1, ψ2, and ψ3 are expressed as:

ψ1(γ,κ1) = −y1 − z1,

ψ2(γ, y1) = κ1 + ay1,

ψ3(γ, z1) = b+ z1(κ1 − c).

(17)

We can rewrite the system (16) as: {
RL
0 Dω

γG (γ) = βγβ−1Φ(γ,G (γ))

G (0) = G ∗.
(18)

where

G (γ) =


κ1(γ)
y1(γ),
z1(γ)

G (0) =


κ1(0)
y1(0)
z1(0)

, Φ(γ,G (0)) =


Ψ1 (γ,κ1)
Ψ1 (γ, y1)
Ψ1 (γ, z1) .
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Now, by replacing RL
0 Dα

γ with C
0Dα

γ and applying the fractional integral, we get:

G (γ) = G (0) +
β

Γ(α)

∫ γ

a
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ. (19)

Let P (ψ) be an extended (α, c) interpolation metric space of real-valued continuous functions on the interval
ψ = [0, T ]. The extended (α, c) interpolation metric on P (ψ) can be defined as the supremum extended
(α,C) interpolation metric:

d(f, g) = sup
γ∈ψ

|f(γ)− g(γ)|2 = ∥f(γ)− g(γ)∥

where f, g ∈ P2(ψ) are functions in the space, θ(f, g) = 1 + supγ∈ψ |f(γ)− g(γ)|2, c > 2 and α = 1
2 .

Let X = P (ψ)× P (ψ)× P (ψ) with the norm

∥f(γ)− g(γ)∥ = sup
γ∈ψ

max
{
|f1(γ)− g1(γ)|2 , |f2(γ)− g2(γ)|2 , |f3(γ)− g3(γ)|2

}
.

To turn the problem into a fixed-point problem, we need to express it in terms of an operator F : X → X
such that a solution to the problem (19) corresponds to a fixed point of F .
Make the problem (15) a fixed point problem now. Define an operator F : X → X as

F (G (γ)) = G (0) +
β

Γ(α)

∫ γ

a
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ. (20)

Theorem 3.5. Under the following assumption the problem (15) has unique solution

1. Let Φ : ψ ×X −→ R is a continuous function.

2. There is a constant vϕ > 0 such that for every G ,G ∈ X, we have

|Φ(γ,G )− Φ(γ,G )| ⩽ vϕ|G − G |.

3.

E < 1, where E =
γα+β−1Γ(β + 1)

[
ω
(
ν2ϕ + 2ωψ

)
+ ω2

ϕ

]
Γ(α+ β)

.

Proof: Let we define maxγ→ψ |Φ(γ, 0)| = ωϕ <∞.
We show that F (Rω) ⊂ Rω where Rω = {G ∈ X⧸∥G ∥ ≤ ω}.
For G ∈ Rω, we have,

∥F (G )∥ ≤ β2

(Γ(α))2
max
γ∈ψ

∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ,G (γ))− Φ(γ, 0) + Φ(γ, 0))dκ

∣∣∣∣2
⩽

β2

(Γ(α)2)
max
γ∈γ

{ ∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ,G (γ))− Φ̄(γ, 0))dκ

∣∣∣∣2 + ∣∣∣∣∫ T

0
κβ−1(γ − κ)α−1Φ̄(γ, 0)dκ

∣∣∣∣2
+ 2

∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ,G (γ))− Φ(γ, 0))dκ

∫ γ

0
κβ−1(γ − κ)α−1Φ(γ, 0)dκ

}
⩽

β2

(Γ(α))2
max
γ∈ψ

{∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ,G (γ))− Φ(γ, 0))dκ

∣∣∣∣2 +

∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(γ, 0)dκ

∣∣∣∣2
+ 2

(∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ,G (γ))− Φ(γ, 0))2dκ

)(∫ γ

0
κβ−1(γ − κ)α−1(Φ(γ, 0))dκ

)
=

β2

(Γ(α))2

{(
γα+β−1β(α, β)

)2
v2ϕ∥G ∥+

(
γα+β−1β(α, β)

)
2ω2

ϕ
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+2
(
γα+β−1β(α, β)

)2
∥G ∥ωϕ

}
=
γα+β−1Γ(β + 1)

Γ(α+ β)

(
v2ϕω + w2

ϕ + 2ωωϕ
)

=
γα+β−1Γ(β + 1)

[
ω
(
v2ϕ + 2ωϕ

)
+ ω2

ϕ

]
Γ(α+ β)

< 1.

For every G ,G ∈ X, we have maxT∈Ψ

|F (G )− F (G )|2

=

(
β√
α

)2

max
γ∈ψ

∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ−

∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ

∣∣∣∣2
⩽

(
β√
α

)2

max
γ∈ψ

{∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ

∣∣∣∣2+ ∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ

∣∣∣∣2
− 2

∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ

∣∣∣∣ ∣∣∣∣∫ γ

0
κβ−1(γ − κ)α−1Φ(κ,G (κ))dκ

∣∣∣∣
⩽

(
β√
α

)2 (
γα+β−1β(α, β)

)2
max
γ∈ψ

|Φ(κ,G (κ))− Φ(κ,G (κ))|2

⩽

(
β√
α

)2 (
γα+β−1β(α, β)

)2
v2ϕmax

γ∈ψ
|G − G |2

≤
(
γα+β−1

√
β + 1

)2
v2ϕ∥G − G ∥2

= η∥G − G ∥2,

where η =
(
γα+β−1

√
β + 1

)2
v2ϕ < 1.

Thus, all the conditions of the Theorem.2.6 satisfied and hence the problem (15) will have unique solution.

3.1. Rössler Attractor-based Numerical Solution

We examine the Rössler chaotic system that has been introduced in [29], [30].

dκ1

dκ
= −y1 − z1,

dy1
dκ

= κ1 + ay1,

dz1
dκ

= b+ z1(κ1 − c).

(21)

The following will be obtained by using fractal-fractional derivatives:
Dω,µ
κ κ1(κ) = −y1 − z1,

Dω,µ
κ y1(κ) = κ1 + ay1,

Dω,µ
κ z1(κ) = b+ z1(κ1 − c).

(22)

Using the connection that exists between fractal and traditional derivatives, we obtain

df(κ)

dκω
= lim

κ1→κ

f(κ1)− f(κ)

κω1 − κω
, ω > 0
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= lim
κ1→κ

f(κ1)− f(κ)

κ1 − κ

κ1 − κ

κω1 − κω

= lim
κ1→κ

f(κ1)−f(κ)
κ1−κ
κω1−κω
κ1−κ

=
f ′(κ)

limκ1→κ
κω1−κω
κ1−κ

=
f ′(κ)

limκ1→κ ωκ
ω−1
1

=
1

ωκω−1
f ′(κ)

Dω,µ
κ κ1(κ) =

1

Γ(1− ω)

d

dκµ

κ∫
0

(κ− ρ)−ωκ1(ρ)dρ

=
1

Γ(1− ω)

1

µκµ−1

d

dκ

κ∫
0

(κ− ρ)−ωκ1(ρ)dρ

=
1

µκµ−1
RL
0 Dω

κ κ1(κ).

So,

Dω,µ
κ y1(κ) =

1

µκµ−1
RL
0 Dω

κ y1(κ).

Dω,µ
κ z1(κ) =

1

µκµ−1
RL
0 Dω

κ z1(κ).

Therefore, we obtain: 
RL
0 Dω

κ κ1(κ) = µκµ−1[−y1 − z1],
RL
0 Dω

κ y1(κ) = µκµ−1[κ1 + ay1],
RL
0 Dω

κ z1(κ) = µκµ−1[b+ z1(κ1 − c)].

(23)

For simplification, 
A (κ,κ1, y1, z1) = µκµ−1[−y1 − z1],

B(κ,κ1, y1, z1) = µκµ−1[κ1 + ay1],

C (κ,κ1, y1, z1) = µκµ−1[b+ z1(κ1 − c)].

(24)

Then we get, 
RL
0 Dω

κ κ1(κ) = A (κ,κ1, y1, z1),
RL
0 Dω

κ y1(κ) = B(κ,κ1, y1, z1),
RL
0 Dω

κ z1(κ) = C (κ,κ1, y1, z1).

(25)
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When the Riemann-Liouville integral is applied to both equation sides, the following results are obtained:

κ1(κ)− κ1(0) =
1

Γ(ω)

κ∫
0

(κ− ρ)ω−1A (ρ,κ1, y1, z1)dρ,

y1(κ)− y1(0) =
1

Γ(ω)

κ∫
0

(κ− ρ)ω−1B(ρ,κ1, y1, z1)dρ,

z1(κ)− z1(0) =
1

Γ(ω)

κ∫
0

(κ− ρ)ω−1C (ρ,κ1, y1, z1)dρ.

(26)

Then we discritize at κn+1:

κ1(κn+1)− κ1(0) =
1

Γ(ω)

κn+1∫
0

(κn+1 − ρ)ω−1A (ρ,κ1, y1, z1)dρ,

y1(κn+1)− y1(0) =
1

Γ(ω)

κn+1∫
0

(κn+1 − ρ)ω−1B(ρ,κ1, y1, z1)dρ,

z1(κn+1)− z1(0) =
1

Γ(ω)

κn+1∫
0

(κn+1 − ρ)ω−1C (ρ,κ1, y1, z1)dρ.

(27)

Thus, we get, 

κ1(κn+1)− κ1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1A (ρ,κ1, y1, z1)dρ,

y1(κn+1)− y1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1B(ρ,κ1, y1, z1)dρ,

z1(κn+1)− z1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1C (ρ,κ1, y1, z1)dρ.

(28)

After applying two-step Lagrange interpolation, we now obtain:

Pr(ρ) ≈
f(κr, y1r)

m
(ρ− κr−1)−

f(κr−1, y1r−1)

m
(ρ− κr)
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κ1(κn+1)− κ1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1

[
A (κr,κ1r , y1r , z1r)

m
(ρ− κr−1)−

A (κr−1,κ1r−1 , y1r−1 , z1r−1)

m
(ρ− κr)

]
dρ,

y1(κn+1)− y1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1

[
B(κr,κ1r , y1r , z1r)

m
(ρ− κr−1)−

B(κr−1,κ1r−1 , y1r−1 , z1r−1)

m
(ρ− κr)

]
dρ,

z1(κn+1)− z1(0) =
1

Γ(ω)

n∑
r=0

κr+1∫
κr

(κr+1 − ρ)ω−1

[
C (κr,κ1r , y1r , z1r)

m
(ρ− κr−1)−

C (κr−1,κ1r−1 , y1r−1 , z1r−1)

m
(ρ− κr)

]
dρ.

(29)
Therefore,

κ1(κn+1)− κ1(0)

=
1

Γ(ω)

[ n∑
r=0

A (κr,κ1r , y1r , z1r)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr−1)dρ

−
n∑
r=0

A (κr−1,κ1r−1 , y1r−1 , z1r−1)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr)dρ

]

=
1

Γ(ω)

[
n∑
r=0

A (κr,κ1r , y1r , z1r)

m

[
(−κr + κn+1)

ω(−(1 + ω)κr−1 + ωκr + κn+1)

ω(ω + 1)

− (−κr+1 + κn+1)
ω(−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]

−
n∑
r=0

A (κr−1,κ1r−1 , y1r−1 , z1r−1)

m

[
(−κr + κn+1)

ω+1

ω(ω + 1)
−

(−κr+1 + κn+1)
ω

× (−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]]
.

Similarly,

y1(κn+1)− y1(0)

=
1

Γ(ω)

[ n∑
r=0

B(κr,κ1r , y1r , z1r)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr−1)dρ

−
n∑
r=0

B(κr−1,κ1r−1 , y1r−1 , z1r−1)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr)dρ

]

=
1

Γ(ω)

[
n∑
r=0

B(κr,κ1r , y1r , z1r)

m

[
(−κr + κn+1)

ω(−(1 + ω)κr−1 + ωκr + κn+1)

ω(ω + 1)

− (−κr+1 + κn+1)
ω(−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]
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−
n∑
r=0

B(κr−1,κ1r−1 , y1r−1 , z1r−1)

m

[
(−κr + κn+1)

ω+1

ω(ω + 1)
−

(−κr+1 + κn+1)
ω

× (−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]]
.

z1(κn+1)− z1(0)

=
1

Γ(ω)

[ n∑
r=0

C (κr,κ1r , y1r , z1r)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr−1)dρ

−
n∑
r=0

C (κr−1,κ1r−1 , y1r−1 , z1r−1)

m

κr+1∫
κr

(κn+1 − ρ)ω−1(ρ− κr)dρ

]

=
1

Γ(ω)

[
n∑
r=0

C (κr,κ1r , y1r , z1r)

m

[
(−κr + κn+1)

ω(−(1 + ω)κr−1 + ωκr + κn+1)

ω(ω + 1)

− (−κr+1 + κn+1)
ω(−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]

−
n∑
r=0

C (κr−1,κ1r−1 , y1r−1 , z1r−1)

m

[
(−κr + κn+1)

ω+1

ω(ω + 1)
−

(−κr+1 + κn+1)
ω

× (−(1 + ω)κr−1 + ωκr+1 + κn+1)

ω(ω + 1)

]]
.

3.2. Numerical Simulations

Figure 2: Dynamical behavior of the Rössler attractor for a = 0.2, b = 0.2 and c = 5.7; as obtained for ω = 0.95, µ = 1
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Figure 3: Dynamical behavior of the Rössler attractor for a = 0.2, b = 0.2 and c = 5.7; as obtained for ω = 0.85, µ = 1
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