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Abstract

In the present paper, we show a result in complete metric spaces about the existence and uniqueness of
coupled fixed points by using simulation functions. Moreover, we illustrate our result by presenting a
theorem about the existence and uniqueness of solution to a general system of nonlinear functional-integral
equations.
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1. Introduction and preliminaries

It is well known that the Banach contraction mapping principle and its generalizations constitute a
very important tool in the theory of existence of solutions to functional, differential, and integral equations.
Particularly, one of these generalizations uses the so-called simulation functions.
In the sequel, we present this class of functions and the above-mentioned fixed point theorem. This material
appears in [1, 2].

Definition 1.1. A function ξ : [0,∞) × [0,∞) −→ R is said to be a simulation function if it satisfies the
following conditions:

(i) ξ(0, 0) = 0.
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(ii) ξ(t, s) < s− t, for any t, s > 0.

(iii) Let (tn) and (sn) be sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then lim sup
n→∞

ξ(tn, sn) < 0.

In what follows, by J we will denote the class of simulation functions. Examples of functions belonging
to J are the following ones:

(1) ξ1(t, s) = ϕ1(s) − ϕ2(t), for any t, s ∈ [0,∞), where ϕ1, ϕ2 : [0,∞) → [0,∞) are continuous functions
such that

(a) ϕ1(t) = ϕ2(t) = 0 if and only if t = 0,
(b) ϕ1(t) < t ≤ ϕ2(t) for any t > 0.

(2) ξ2(t, s) = φ(s) − t, for any t, s ∈ [0,∞), where φ : [0,∞) → [0,∞) is a continuous and increasing
function and it satisfies that φ(t) < t if t > 0.

By G we denote the class of functions φ satisfying the above mentioned conditions. It is clear that if φ ∈
G then φ(0) = 0. Examples of functions in G are φ(t) = ln (1 + t); φ(t) = arctan t; φ(t) =

t

t+ 1
; φ(t) = kx

with k ∈ (0, 1).

Next, we present the result about fixed point by using simulation functions that it appears in Theorem
2.8 of [1].

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X a mapping such that there exists
ξ ∈ J satisfying

ξ
(
d(Tx, Ty), d(x, y)

)
≥ 0,

for any x, y ∈ X with x ̸= y. Then T has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X the Picard
sequence (xn), where xn = Txn−1 for any n ∈ N converges to the fixed point x∗ ∈ X.

In this paper, we present a result about coupled fixed points. The concept of coupled fixed point was
introduced by Guo and Lakshmikantham in [3] for the study of coupled quasi-solutions of an initial value
problem for ordinary differential equations. Some papers on coupled fixed points have appeared in the
literature (see [3, 4, 5, 6, 7, 8, 9, 10], among others). Moreover, as an application of our result, we study the
existence and uniqueness of solutions to a coupled system of functional equations.

2. Main result

Suppose that (X, d) is a complete metric space and G : X ×X → X a mapping.

Definition 2.1. An element (x0, y0) ∈ X × X is said to be a coupled fixed point of the mapping G if
G(x0, y0) = x0 and G(y0, x0) = y0.

Now, we are ready to present our main result.

Theorem 2.2. Let (X, d) be a complete metric space and G : X ×X → X be a mapping, such that there
exists ξ ∈ J satisfying the following condition

ξ
(
d
(
G(x, y), G(u, v)

)
, max

(
d(x, u), d(y, v)

))
≥ 0,

for any (x, y), (u, v) ∈ X ×X, with (x, y) ̸= (u, v). Then G has a unique coupled fixed point.

Proof. Consider the metric space
(
X ×X, d̃

)
where

d̃
(
(x, y), (u, v)

)
= max

(
d(x, u), d(y, v)

)
,

for any (x, y), (u, v) ∈ X ×X.
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It is well known that (X ×X, d̃) is also a complete metric space.
Next, we define the following mapping G̃ : X ×X → X ×X by

G̃(x, y) =
(
G(x, y), G(y, x)

)
.

In what follows, we check that G̃ satisfies assumptions of Theorem 1.2.
In fact, for any x, y, u, v ∈ X, we have that

d̃
(
G̃(x, y), G̃(u, v)

)
= d̃
((

G(x, y), G(y, x)
)
,
(
G(u, v), G(v, u)

))
=

= max
(
d
(
G(x, y), G(u, v)

)
, d
(
G(y, x), G(v, u)

))
.

In this point, we can consider two cases:

(a) d̃
(
G̃(x, y), G̃(u, v)

)
= d
(
G(x, y), G(u, v)

)
,

(b) d̃
(
G̃(x, y), G̃(u, v)

)
= d
(
G(y, x), G(v, u)

)
.

Case (a). Taking into account our assumption, we infer

ξ
(
d̃
(
G̃(x, y), G̃(u, v)

)
, d̃
(
(x, y), (u, v)

))
=

= ξ
(
d
(
G(x, y), G(u, v)

)
,max

(
d(x, u), d(y, v)

))
≥ 0.

This proves that the condition appearing in Theorem 1.2 is satisfied for the complete metric space (X×X, d̃).

Case (b). By using similar argument to case (a), we get

ξ
(
d̃
(
G̃(x, y), G̃(u, v)

)
, d̃
(
(x, y), (u, v)

))
=

= ξ
(
d
(
G(y, x), G(v, u)

)
,max

(
d(x, u), d(y, v)

))
=

= ξ
(
d
(
G(y, x), G(v, u)

)
,max

(
d(y, v), d(x, u)

))
≥ 0.

In this case, we have also proved that the condition of Theorem 1.2 holds.
Now, by Theorem 1.2, the mapping G̃ has a unique fixed point. This is, there exists a unique pair

(u0, v0) ∈ X ×X such that
G̃(u0, v0) = (u0, v0).

Taking into account the definition of G̃, we deduce that

G̃(u0, v0) =
(
G(u0, v0), G(v0, u0)

)
= (u0, v0),

and from this
G(u0, v0) = u0 and G(v0, u0) = v0.

This is, (u0, v0) ∈ X ×X is a coupled fixed point of the mapping G.
It is easily seen that the uniqueness of the coupled fixed point is (u0, v0) is obtained of the uniqueness

of the fixed point (u0, v0) for G̃.
This completes the proof.
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3. Applications

In this section, we illustrate our result studying the existence and uniqueness of solutions to the following
coupled system of functional-integral equationsx(t) = f

(
t, x(t), y(t),

∫ t
0 g(s, x(s), y(s)

)
ds
)

y(t) = f
(
t, y(t), x(t),

∫ t
0 g(s, y(s), x(s)

)
ds
)
,

(1)

for t ∈ [0, 1], in C[0, 1]× C[0, 1].
In the following theorem, we present a sufficient condition for the existence and uniqueness of solutions

to Problem (1).

Theorem 3.1. Suppose the following assumptions:

(i) f : [0, 1]× R× R× R → R and g : [0, 1]× R× R → R are continuous functions.

(ii) There exists φ ∈ G such that∣∣f(t, x, y, z)− f(t, u, v, w)
∣∣ ≤ φ

(
max(|x− u|, |y − v|, |z − w|)

)
,

for any t ∈ [0, 1] and x, y, z, u, v, w ∈ R.
(Here, G is the class of functions appearing in section 1).

(iii) The following inequality ∣∣g(t, x, y)− g(t, u, v)
∣∣ ≤ max

(
|x− u|, |y − v|

)
,

for any t ∈ [0, 1] and x, y, u, v ∈ R, holds.
Then Problem (1) has a unique solution (x, y) ∈ C[0, 1]× C[0, 1].

Proof. Consider the operator F defined on C[0, 1]× C[0, 1] by

F (x, y)(t) = f

(
t, x(t), y(t),

∫ t

0
g
(
s, x(s), y(s)

)
ds

)
,

for any t ∈ [0, 1].
From i, it follows that F applies C[0, 1]× C[0, 1] into C, [0, 1].
Now, we check that F satisfies the condition appearing in Theorem 2.2.
In fact, by using our assumptions, we have, for any (x, y), (u, v) ∈ C[0, 1] × C[0, 1] with (x, y) ̸= (u, v),

that

d
(
F (x, y), F (u, v)

)
= sup

0≤t≤1

∣∣∣F (x, y)(t)− F (u, v)(t)
∣∣∣ =

= sup
0≤t≤1

∣∣∣∣f (t, x(t), y(t), ∫ t

0
g (s, x(s), y(s)) ds

)
−f

(
t, u(t), v(t),

∫ t

0
g (s, u(s), v(s)) ds

)∣∣∣∣
≤ sup

0≤t≤1
φ
(
max

(
|x(t)− u(t)|, |y(t)− v(t)|

)
,
∣∣ ∫ t

0
g (s, x(s), y(s))− g (s, u(s), v(s)) ds

∣∣)
≤ sup

0≤t≤1
φ
(
max

(
d(x, u), d(y, v),

∫ t

0

∣∣g(s, x(s), y(s))− g(s, u(s), v(s))
∣∣ds)

≤ sup
0≤t≤1

φ
(
max

(
d(x, u), d(y, v),

∫ t

0
max

(
|x(s)− u(s)|, |y(s)− v(s)|

)
ds
)

≤ sup
0≤t≤1

φ
(
max

(
d(x, u), d(y, v),max

(
d(x, u), d(y, v)

))
≤ sup

0≤t≤1
φ
(
max

(
d(x, u), d(y, v)

))
,
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where we have used the fact that φ is increasing.
From the last inequality, we deduce that

φ
(
max

(
d(x, u), d(y, v)

))
− d
(
F (x, y), F (u, v)

)
≥ 0. (2)

Now, taking into account that if we put ξ(t, s) = φ(s)− t, then, as we saw in section 1, ξ ∈ J and (2)

ξ
(
d
(
F (x, y), F (u, v)

)
,max

(
d(x, u), d(y, v)

))
≥ 0.

This proves that assumption of Theorem 2.2 is satisfied.
Therefore, F has a unique coupled fixed point (x0, y0). This means that (x0, y0) ∈ C[0, 1] × C[0, 1],

F (x0, y0) = x0 and F (y0, x0) = y0, or, equivalently, for any t ∈ [0, 1]

x0(t) = f
(
t, x0(t), y0(t),

∫ t

0
g
(
s, x0(s), y0(s)

)
ds
)

y0(t) = f
(
t, y0(t), x0(t),

∫ t

0
g
(
s, y0(s), x0(s)

)
ds
)
.

This proves that (x0, y0) ∈ C[0, 1]× C[0, 1] is a unique solution to Problem (1).

Next, we present a particular numerical example.

Remark 3.2. In our example, we will use the function f : R+ → R given by f(x) = ln (1 + x). This
function, as it is concave and f(0) = 0, a well known result says us that∣∣ ln (1 + x)− ln (1 + y)

∣∣ ≤ ln
(
1 + |x− y|

)
,

for any x, y ∈ R+.
We are ready to present our numerical example.

Example 3.3. Consider the following coupled system of integral equations

x(t) = t2 +
1

3

(
ln

(
1 +

|x(t)|
2

)
+ ln

(
1 + |y(t)|

))
+

+ ln
(
1 +

∫ t
0 λ
(
s2 + |x(s)|+ |y(s)|

)
ds
)

y(t) = t2 +
1

3

(
ln

(
1 +

|y(t)|
2

)
+ ln

(
1 + |x(t)|

))
+

+ ln
(
1 +

∫ t
0 λ
(
s2 + |x(s)|+ |y(s)|

)
ds
)
,

(3)

for any t ∈ [0, 1] with λ > 0. Notice that Problem (3) is a particular of Problem (1) with

f(t, x, y, z) = t2 +
1

3

(
ln

(
1 +

|x|
2

)
+ ln (1 + |y|) + ln (1 + |z|)

)
,

and
g(t, x, y) = λ

(
t2 + |x|+ |y|

)
.

It is clear that f and g are continuous functions on [0, 1]×R×R×R and on [0, 1]×R×R, respectively.
Therefore, assumption i of Theorem 3.1 is satisfied. Moreover, for any t ∈ [0, 1] and x, y, z, u, v, w ∈ R, we
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have

∣∣f(t,x, y, z)− f(t, u, v, w)
∣∣ = 1

3

∣∣∣∣∣ ln
(
1 +

|x|
2

)
+ ln (1 + |y|) + ln (1 + |z|)−

− ln

(
1 +

|u|
2

)
− ln (1 + |v|)− ln (1 + |w|)

∣∣∣∣∣
≤ 1

3

[ ∣∣∣∣∣ ln
(
1 +

|x|
2

)
− ln

(
1 +

|u|
2

)∣∣∣∣∣+
+

∣∣∣∣∣ ln (1 + |y|)− ln (1 + |v|)

∣∣∣∣∣+
∣∣∣∣∣ ln (1 + |z|)− ln (1 + |w|)

∣∣∣∣∣
]

≤ 1

3

[
ln

(
1 +

∣∣∣∣∣ |x|2 − |u|
2

∣∣∣∣∣
)

+ ln
(
1 +

∣∣∣|y| − |v|
∣∣∣)+

+ ln
(
1 +

∣∣∣|z| − |w|
∣∣∣) ]

≤ 1

3

[
ln

(
1 +

|x− u|
2

)
+ ln (1 + |y − v|) + ln (1 + |z − u|)

]

≤ 1

3

[
ln (1 + |x− u|) + ln (1 + |y − v|) + ln (1 + |z − u|)

]

≤ 1

3

[
3 ln

(
1 + max

(
|x− u|, |y − v|, |z − u|

))]
≤ ln

(
1 + max

(
|x− u|, |y − v|, |z − u|

))
, (4)

where we have used Remark 3.2, the inequality
∣∣|x| − |y|

∣∣ ≤ |x− y|, for any x, y ∈ R and the increasing
character of the function f(x) = ln (1 + x) for x ≥ 0. From 4, we infer that assumption ii of Theorem 3.1 is
satisfied with the function φ(t) = ln (1 + t). It is easily seen that φ ∈ G.

On the other hand, for any t ∈ [0, 1] and x, y, u, v ∈ R, we have∣∣g(t, x, y)− g(t, u, v)
∣∣ = λ

∣∣|x|+ |y| − |u| − |v|
∣∣ ≤

≤ λ
(∣∣|x| − |u|

∣∣+ ∣∣|y| − |v|
∣∣) ≤

≤ λ
(∣∣x− u

∣∣+ ∣∣y − v
∣∣) ≤

≤ 2λmax
(∣∣x− u

∣∣, ∣∣y − v
∣∣) ).

Therefore, if 2λ ≤ 1, this is, if 0 ≤ λ ≤ 1

2
, then assumption iii of Theorem 3.1 is satisfied.

Finally, by Theorem 3.1, we deduce that if 0 ≤ λ ≤ 1

2
, Problem (3) has a unique solution (x0, y0) ∈

C[0, 1]× C[0, 1].
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