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Abstract

In this paper we are interested in the study of the existence or nonexistence and uniqueness or nonuniqueness
of the solutions of the boundary value problem involving a third order ordinary nonlinear autonomous
differential equation satisfying a boundary conditions. Its solutions are similarity solutions to a problem of
boundary-layer theory.
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1. Introduction

Nonlinear autonomous differential equations are mathematical models in which the rate of change of a
variable depends nonlinearly on its current value and the equation lacks explicit dependence on time. These
equations are significant in modeling various natural phenomena, from population dynamics to chemical re-
actions and electrical circuits. Unlike linear equations, their solutions often exhibit complex behaviors such
as stability, periodicity, or chaotic dynamics. Understanding nonlinear autonomous differential equations
is crucial in physics, engineering, and biology for predicting and analyzing systems that evolve over time
without external influences. For recent results on various types of nonlinear differential equations, see the
following [1, 2, 3, 8, 9, 10, 11, 11, 21].
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In this paper, we consider Let β ∈ R. We consider the following boundary value problem:
f ′′′(t) + f(t)f ′′(t) + βf ′(t) [f ′(t)− 1] = 0;

f(0) = a,

f ′(0) = b,

f ′(t) → λ as t → +∞,

(Pβ;a,b,λ)

where β ∈ R, a, λ ∈ R, b, t ∈ [0,+∞). This problem is associated with

f ′′′(t) + f(t)f ′′(t) + βf ′(t)
[
f ′(t)− 1

]
= 0. (1)

In [4], the authors give only a partial results exactly in the case β > 1, of the problem (Pβ;a,b,λ) which
arises in the boundary-layer theory in some contexts of fluids mechanics, in particular the mixed convection
phenomena created by a heated plate and embedded in a porous medium saturated with a fluid. How is
modeling of boundary-layer of a system of partial differential equations which reduces to a system involving
a third order differential equation (see [18, 19, 22]). We obtain the following equation with a boundary
conditions which appears from others equations and others boundary conditions that are obtained during
the modeling of a phenomenon of mixed convection.

∂3Ψ

∂y3
+

∂Ψ

∂x

∂2Ψ

∂y2
− ∂Ψ

∂y

(
∂2Ψ

∂x∂y
−mxm−1

)
= 0, (2)

with the boundary conditions

∂Ψ

∂x
(x, 0) = −ωx

m−1
2 ,

∂Ψ

∂y
(x, 0) = xm and

∂Ψ

∂y
(x,+∞) = 0. (3)

We are looking for similarity solutions of Eq. (2), with the boundary conditions (3), which reduces to a
system involving a third order differential equation by introducing the dimensionless similarity variables (see
[6, 14]):

Ψ(x, y) =
√
2x

m+1
2 F (t) with t(x, y) =

1√
2
x

m−1
2 y, and Θ(x, y) = xmθ(t).

Therefore, we obtain the following third order autonomous nonlinear differential equation

F ′′′(t) + (m+ 1)F (t)F ′′(t)− 2mF ′(t)
[
F ′(t)− 1

]
= 0, (4)

with the boundary conditions F (0) = a0 ∈ R, F ′(0) = b ≥ 0 and F ′(+∞) = λ ∈ {0, 1}.
Then, Ψ is a solution of Eq. (2) if and only if F is a solution of Eq. (4). The function Ψ is called similarity
solution of (2) and the variable t is called the similarity variable.

Remark 1.1. When m > −1, Eq. (4) is equivalent to the following equation

f ′′′(t) + f(t)f ′′(t) + βf ′(t)
[
f ′(t)− 1

]
= 0, (5)

with f(t) =
√
m+ 1F

(
t√

m+ 1

)
and β is a constant depending on m.

1. For m = −1, Eq. (4) reduces to F ′′′(t) + 2F ′(t) [F ′(t)− 1] = 0. This equation has a first integral.
2. For m = 0 (resp. β = 0), Eq. (4) (resp. Eq. (5)) reduces to the Blasius equation (a lot of papers have

dealt with it).
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2. Description of our method

As we mentioned in the introduction, we interested in studying solutions of the Eq. (1) and associated
with this equation the following boundary value problem:

f ′′′(t) + f(t)f ′′(t) + βf ′(t) [f ′(t)− 1] = 0,

f(0) = a =
√
m+ 1a0,

f ′(0) = b,

f ′(t) → λ as t → +∞,

(Pβ;a,b,λ)

where t ∈ [0,+∞), a, λ ∈ R, b ≥ 0 and the parameter β > 1 is a temperature power-law profile and b = 1+ ε
is the mixed convection parameter. Note that, if λ /∈ {0, 1}, then the problem (Pβ;a,b,λ) do not have any
solutions (see [15]).

Let (Qβ;a,b,c) be the following initial value problem, we denote by fc the solution of this problem on the
right maximal interval of its existence [0, Tc):

f ′′′(t) + f(t)f ′′(t) + βf ′(t) [f ′(t)− 1] = 0,

f(0) = a,

f ′(0) = b,

f ′′(0) = c.

(Qβ;a,b,c)

The approach used to study the boundary value problem (Pβ;a,b,λ) is a shooting method that consists in
finding values of a real parameter c = f ′′

c (0) for which the solution of Eq. (1) satisfying the initial conditions
of (Qβ;a,b,c) exists up to infinity and such that f ′

c(t) → λ ∈ {0, 1} as t → +∞.
This approach has used in the study of different cases, the case where a ≥ 0, b ≥ 0, 0 < β < 1 was treated
in [4], and for a ∈ R, b ≤ 0, 0 < β < 1 see [5], and the results obtained generalize the ones of [20], for a ∈ R,
b ≤ 0, β ≥ 1 see [12]. In [16], have established some results about the existence and uniqueness of convex
and concave solution of (Pβ;a,b,1) where −2 < β < 0 and b > 0. These results can be recovered from [17],
where the general equation f ′′′ + ff ′′ + g(f ′) = 0 is studied. For the case a ∈ R, b ≥ 0, β < 0, see [13]. In
[23, 24], some theoretical results can be found about the problem (Pβ;0,b,1) with −2 < β < 0, and b < 0, the
authors use the method based on the fixed point theorem allows them to prove the existence of a convex
solution for the case a = 0.

3. On Blasius Equation

We recall some results about subsolutions and supersolutions of the Blasius equation (see [17]). Let I ⊂ R
be an interval and f : I → R be a function.

Definition 3.1. We say that f is a subsolution (resp. a supersolution) of the Blasius equation if f is of class
C3 and if f ′′′ + ff ′′ ≤ 0 on I (resp.f ′′′ + ff ′′ ≥ 0 on I).

Definition 3.2. Let ϵ > 0, We say that f is a ϵ-subsolution (resp. a ϵ-supersolution) of the Blasius equation
if f is of class C3 and if f ′′′ + ff ′′ ≤ −ϵ on I (resp. f ′′′ + ff ′′ ≥ ϵ on I).

Proposition 3.3. Let t0 ∈ R. There does not exist nonpositive concave subsolution of the Blasius equation
on the interval [t0,+∞).

Proof. See [17], Proposition 2.11.
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Proposition 3.4. Let t0 ∈ R. There does not exist nonpositive convex supersolution of the Blasius equation
on the interval [t0,+∞).

Proof. [17], Proposition 2.5.

Proposition 3.5. Let t0 ∈ R. There does not exist ϵ-subsolution of the Blasius equation on the interval
[t0,+∞).

Proof. See [17], Proposition 2.18.

4. Preliminary Results

Proposition 4.1 ([12]). Let us suppose that f be a solution of Eq. (1) on the maximal interval I = (T−, T+),
for all t ∈ I, we have

1. Let H0 = f ′′ + f(f ′ − β). Then H ′
0 = (1− β)f ′2;

2. Let H1 = f ′′ + f(f ′ − 1). Then H ′
1 = (1− β)f ′(f ′ − 1);

3. Let H2 = 3f ′′2 + βf ′2(2f ′ − 3). Then H ′
2 = −6ff ′′2;

4. Let H3 = 2ff ′′ − f ′2 + (2f ′ − β)f2. Then H ′
3 = 2(2− β)ff ′2.

Proposition 4.2. Let f be a solution of the Eq. (1) on some maximal interval I = (T−, T+) and β > 1.

1. If F is any anti-derivative of f on I, then (f ′′eF )′ = −βf ′(f ′ − 1)eF .

2. Assume that T+ = +∞ and that f ′(t) → λ ∈ R as t → +∞. If, moreover, f is of constant sign at
infinity, then f ′′(t) → 0 as t → +∞.

3. If T+ = +∞ and if f ′(t) → λ ∈ R as t → +∞, then λ = 0 or λ = 1.

4. If T+ < +∞, then f ′′ and f ′ are unbounded near T+.

5. If there exists a point t0 ∈ I satisfying f ′′(t0) = 0 and f ′(t0) = µ, where µ = 0 or 1 then for all t ∈ I,
we have f(t) = µ(t− t0) + f(t0).

6. If f ′(t) → 0 as t → +∞, then f(t) does not tend to −∞ or +∞ as t → +∞.

Proof. The first statement follows immediately from Eq.(1). For the proof of statements (2)-(5), see [17],
and statement (6), see [4].

Proposition 4.3. Let β > 1 and f be a solution of (1) on some right maximal interval [τ, T+). If there
exists t0 ∈ [τ, T+) such that f ′

c(t0) = 0 and f ′′
c (t0) < 0, then for all t > t0, f ′′

c (t) < 0.

Proof. Let fc be a solution of (1) on some right maximal interval of existence [0, T+). Let there exists
t0 ∈ [τ, T+), such that f ′

c(t0) = 0, f ′′
c (t0) < 0. We suppose that there exists t1 > t0, such that f ′′

c (t1) = 0, it
follows that f ′

c < 0 on (t0, t1), then from Eq.(1), we have

f ′′′
c (t1) = −βf ′

c(t1)(f
′
c(t1)− 1) < 0,

which yields a contradiction.
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5. The boundary value problem (Pβ;a,b,λ) with b ≥ 0

In the following, we will study the boundary value problem (Pβ;a,b,λ) for β > 1, a ∈ R and b ≥ 0. For
more details, see [17], there is a results about this problem with the function g no vanishes between b and
λ . The case where 0 < β ≤ 1, with b ≥ 0, was an almost complete study in [4]. Moreover, in our case,
we are interested here in concave, convex, concave-convex and convex-concave solutions of this problem. We
consider the case b ≥ 0, we will distinguish between the cases 0 ≤ b < 1 and b ≥ 1.

Remark 5.1. It is clear for 0 ≤ b < 1, the boundary value problem (Pβ;a,b,1) does not have a concave solution
on [0,+∞), and the boundary value problem (Pβ;a,b,0) does not have a convex solution on [0,+∞). For b ≥ 1,
the boundary value problem (Pβ;a,b,1) does not have a convex solution on [0,+∞).

Proposition 5.2. Let β > 1. There does not exist c ∈ R, such that f ′
c is a solution on its right maximal

interval of existence [0, T+) and f ′
c(t) → +∞) as t → Tc, with Tc < +∞.

Proof. Let β > 1 and fc be a solution of the problem (Pβ;a,b,+∞), i.e. f ′
c(Tc) = +∞. There exists t0 ∈ [0, Tc)

such that f ′
c(t) > 1 for all t ∈ [t0, Tc), we have

f ′′′
c (t) + fc(t)f

′′
c (t) = −βf ′

c(t)(f
′
c(t)− 1) < −βf ′

c(t0)(f
′
c(t0)− 1) = −ϵ.

Then, fc is a ϵ-subsolution of the Blasius equation on [t0, Tc). Therefore from Proposition 3.5, we have
Tc < +∞. Furthermore the function H1 is decreasing for t > t0. Hence for all t ∈ [t0, Tc), H1(t) ≤ H1(t0),
then we have

fc(t)(f
′
c(t)− 1) < f ′′

c (t) + fc(t)(f
′
c(t)− 1) ≤ H1(t0) < f ′′

c (t0) + fc(t0)f
′
c(t0),

which is a contradiction with the fact that f ′
c(Tc) = +∞.

5.1. The case a ≤ 0

Remark 5.3. This case has been studied in [17], it shows that with either β ≥ 1 and a < 0, or β > 1 and
a ≤ 0, the boundary value problem (Pβ;a,b,λ) has no concave solution if b > 1, and no convex solution if b ≤ 1.

5.1.1. The case 0 ≤ b < 1

We consider the following sets C0, C1, C2 and C3 defined by:

C0 = {c < 0; f ′
c > 0 on [0, Tc)},

C1 = {c < 0; ∃sc ∈ [0, Tc) s.t f ′
c > 0 on [0, sc) and f ′

c(sc) = 0},

C2 = {c ≥ 0; f ′′
c ≥ 0 on [0, Tc)},

C3 = {c ≥ 0; ∃tc ∈ [0, Tc), ∃ϵc > 0 s.t f ′
c < 1 on [0, tc),

f ′
c > 1 on (tc, tc + ϵc) and f ′′

c > 0 on (0, tc + ϵc)}.

Remark 5.4. This is obvious that C0, C1, C2 and C3 are disjoint sets and that there union is the whole line
of real numbers.

Proposition 5.5. Let β ≥ 2 and c ∈ C0, then there exists c ≥ c∗, such that C0 = [c∗, 0[.

Proof. Let c ∈ C0 and β ≥ 2 and fc be a solution of the problem (Pβ;a,b,λ). Either there exists t0 ∈ [0, Tc[
such that fc(t0) = 0 or fc < 0 and f ′

c → 0 as t → +∞. Thus the function H3 is increasing on [0, t0)
or on [0,+∞), and from Proposition 4.2, item 2, we have 2ac − b2 + (2b − β)a2 ≤ 0, which implies that
c ≥ b2+(β−2b)a2

2a .
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Remark 5.6. Thanks to the previous Proposition and from Proposition 4.3, thus C1 ̸= ∅, with fc(sc) < 0,
the point sc be as in definition of C1 i.e fc < 0 on [0, sc) and f ′

c(sc) = 0. Hence fc is not defined on the
whole interval [0,+∞)

Lemma 5.7. Let c ∈ C0 and c ≤ a(β − b), if there exists t0 such that fc(t0) = 0 then f ′′
c (t0) ≤ 0.

Proof. Let c ∈ C0 and c ≤ a(β − b). Assume for contradiction that there exists t0 ∈ [0, Tc) such that
fc(t0) = 0 and f ′′

c (t0) > 0. Thus the function H0 is decreasing on [0, t0), hence c + a(b − β) > 0, this is a
contradiction.

5.1.2. The case b ≥ 1

In this case it is easy to see that R can be partitioned into the following sets C ′
0, C ′

1, C ′
2, C ′

3 and C ′
4

defined by:

C ′
0 = {c > 0 : f ′′

c > 0 on [0, Tc)},

C ′
1 = {c > 0 : f ′′

c > 0 on [0, sc) and f ′′
c < 0 on (sc, sc + εc)},

C ′
2 = {c ≤ 0 : f ′′

c ≤ 0 on [0, Tc)},

C ′
3 = {c ≤ 0 : ∃tc ∈ [0, Tc),∃εc > 0 s.t f ′

c > 1 on (0, tc),

f ′
c < 1 on (tc, tc + εc) and f ′′

c < 0 on (0, tc + εc)},

C ′
4 = {c ≤ 0 : ∃sc ∈ [0, Tc),∃εc > 0 s.t f ′′

c < 0 on (0, sc),

f ′′
c > 0 on (sc, sc + εc) and f ′

c > 1 on (0, sc + εc)}.

Remark 5.8. From the Proposition 5.2 and as we say at the beginning of this section, this is obvious that
C ′
0 = ∅ and thus C ′

1 =]0,+∞[. And from Proposition 4.2, item 1, we can deduce that C ′
4 = ∅. Thus that

C ′
2 ∪ C ′

3 =]−∞, 0].

Lemma 5.9. Let c > 0 and b > 3
2 , then the problem (Pβ;a,b,0) has no nonpositive convex-concave solution.

Proof. Let c > 0, b > 3
2 and fc be a nonpositive convex-concave solution of the problem (Pβ;a,b,0), this implies

that the function H2 is increasing on [0,+∞), we have H2(0) ≤ H2(t). It follows that

∀t ∈ [0,+∞), 3c2 + βb2(2b− 3) < H2(t).

Thanks to Proposition 4.2, item 2 and 3, H2(+∞) = 0, a contradiction.

Remark 5.10. If c ∈ C ′
1, b ≥ 3

2 and f ′
c(+∞) = 0, then the solution fc changes the sign.

5.2. The case a > 0

Proposition 5.11. Let 1 < β ≤ 2, b ≥ 0. There exists c ≥ c∗ such that the problem (Pβ;a,b,1) has infinitely
many solutions.

Proof. Let 1 < β ≤ 2 and c ∈ R, we assume for contradiction that f ′ does not tend to 1, from the Proposition
5.2, it follows that, either f ′ tend to 0 or there exists t0 ∈ [0, Tc), such that f ′

c(t0) = 0. Hence in the first
case and from the Proposition 4.2, item 4, the function H3 is increasing on [0,+∞), we have for all t > 0,
H3(0) < H3(t), and from Proposition 4.2 item 6, we get H3(+∞) = −βℓ2, where ℓ is the limit of fc at
infinity, it follows that 2ac− b2+(2b−β)a2 ≤ 0, we obtain c ≤ b2+(β−2b)a2

2a . For the second case the function
H3 is also increasing on [0, t0), thus H3(0) < H3(t0) < 0, then we obtain the results as above.
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5.2.1. The case 0 ≤ b < 1

Let us divide the sets C0 into the following two subsets:

C0.1 = {c ∈ C0; f ′
c(t) → 0 as t → +∞},

C0.2 = {c ∈ C0; f ′
c(t) → 1 as t → +∞}.

Proposition 5.12. Let c ∈ C1.1 ∪ C2. Then there exists c∗ < −b

√
β(3−2b)

3 , such that c < c∗.

Proof. Let c ∈ C1.1∪C2, then fc and f ′
c are positive on [0,+∞), if c ∈ C1.1, thus the function H2 is decreasing

on [0,+∞), we have H2(0) > H2(+∞), we get 3c2 + βb2(2b− 3) > 0, we obtain the result. And for c ∈ C2,
the function H2 is also increasing on [0, t0), thus H2(0) < H2(t0), where t0 be the point such that f ′

c(t0) = 0,
we obtain the results.

Remark 5.13. From the previous proposition, the problem (Pβ;a,b,1) has infinitely many solutions which
changes the concavity, and thus [c∗, 0) ⊂ C0.2.

Let us divide the sets C3 into the following subsets:

C3.1 = {c ∈ C3; f ′
c(t) → 1 as t → +∞}

C3.2 = {c ∈ C3; f ′
c(t) → 0 as t → +∞}

C3.3 = {c ∈ C3; ∃sc ∈ [0, Tc) s.t f ′
c > 0 on [0, sc) and f ′

c(sc) = 0}

Proposition 5.14. Let 1 < β ≤ 2 and c ∈ C0.1 ∪ C1 ∪ C3.2 ∪ C3.3, then there exists c∗ such that c < c∗.

Proof. Let 1 < β ≤ 2 and c ∈ C0.1 ∪ C1 ∪ C3.2 ∪ C3.3. From the Proposition 4.2 item 2 and 3, if c ∈
C1 ∪ C3.3, since f ′

c and fc are positive on [0, sc), hence the function H3 is increasing on [0, sc), we have
2ac − b2 + (2b − β)a2 ≤ 0, which implies that c < b2+(β−2b)a2

2a . And from Proposition 4.2 item 4 and 6, if
c ∈ C0.1 ∪ C3.2, we have H3 is increasing on [0,+∞), we obtain the results.

5.2.2. The case b > 1

Proposition 5.15. Let 1 < β ≤ 2, then the problem (Pβ;a,b,1) has infinitely many solutions which changes
the convexity if c > 0.

Proof. see [4] and from Remark 5.8 the solution of the problem (Pβ;a,b,1) changes the convexity if c ∈ C ′
1.

Lemma 5.16. Let c ∈ C ′
1 and if there exists t0 > sc such that f ′

c(t0) = 0, or f ′
c(t) → 0 as t → +∞, then

c > −c∗.

Proof. Let c ∈ C ′
1 and t0 such that f ′

c(t0) = 0. Thus the function H2 is decreasing on [0, t0), hence
3c2 + βb2(2b− 3) > 3f ′′2

c (t0) > 0. And the case if we have f ′
c(+∞) = 0, from the proposition 4.2 item 2 and

4, we obtain the results.

All this, from the previous Propositions we have the following theorem.

Theorem 5.17. Let β > 1 and b ≥ 0.

1. If a < 0 and b ≥ 3
2 , the boundary value problem (Pβ;a,b,0) has no nonpositive convex-concave solution

on [0,+∞).
2. For all a ∈ R, the boundary value problem (Pβ;a,b,1) has infinitely many solutions on [0,+∞).
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