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Abstract

We consider the Dirichlet problem for a class of nonlinear elliptic equations with degenerate coercivity whose
model is

div

(
|∇u|p−2∇u

(1 + |u|)θ(p−1)

)
= divF,

with 0 < θ < 1 and |F | ∈ Ls(Ω). When θ is sufficiently close to 1, we prove that the solutions are not in
Sobolev spaces.
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1. Introduction

Let Ω be a bounded open subset of RN , with N ≥ 2, and p a real such that 1 < p < N . We consider the
following problem

−div a(x, u,∇u) = −divF in Ω,

u = 0 on ∂Ω,
(1)
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where a : Ω×R×RN → RN is a Carathéodory function that satisfied the following assumptions for almost
every x ∈ Ω, for every s ∈ R and for every ξ, ξ′ in RN with ξ ̸= ξ′:

a(x, s, ξ) · ξ ≥ hp−1(|s|)|ξ|p (2)

where for t ∈ R, h(t) = 1
(1+t)θ with 0 ≤ θ < 1,

|a(x, s, ξ)| ≤ β(a0(x) + |s|p−1 + |ξ|p−1) (3)

where β > 0, a0 is a non negative function in Lp′(Ω) with p′ = p
p−1 , and

(a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) > 0. (4)

Regularity results for problems like (1) have been established by many authors when the function h is
constant. The linear case with p = 2 has been studied by G. Stampacchia in [14, 15]. The nonlinear case
with 1 < p < N has been investigated in [7, 8, 13]. For a solution u of (1), it is shown that if |F | belongs to
Ls(Ω) with s < N

p−1 then u belongs to L(s(p−1))∗(Ω), while it is in L∞(Ω) if s > N
p−1 . The limit case yields u

in the Orlicz space Lϕ(Ω) generated by the N-function ϕ(t) = exp(|t|
N

N−1 )− 1.
When h is not necessarily a constant function (0 ≤ θ ≤ 1), the problem (1) was studied in [5] and in [19]

where an L∞ result was obtained for solutions of its parabolic counter-part. It has been established in [5]
that if |F | belongs to Ls(Ω), the problem (1) admits a solution u such as :

1. s > N
p−1 ⇒ u ∈ W 1,p

0 (Ω)∩L∞(Ω),

2. s = N
p−1 ⇒ u ∈ W

1,p(1−θ)
0 (Ω)∩LϕN,θ

(Ω),

3. Np′

N−θ(N−p) ≤ s < N
p−1 ⇒ u ∈ W 1,p

0 (Ω)∩Lr(Ω),

4. max
(
p′, Np′

p((1−θ)N+θ)

)
≤ s < Np′

N−θ(N−p) ⇒ u ∈ W 1,q
0 (Ω)∩Lr(Ω),

where LϕN,θ
(Ω) is the Orlicz space generated by the N-function

ϕN,θ(t) = exp

(
t
N(1−θ)
N−1

)
− 1, p′ =

p

p− 1
, r =

(1− θ)Ns(p− 1)

N − s(p− 1)
and q =

(1− θ)Ns(p− 1)

N − θs(p− 1)
.

The following figure summarizes these different regularity results in light of the different areas to which the
pairs (θ, s) belong.
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Figure 1: Different areas of regularity of solutions.
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Notice that when θ is close to 1, precisely N(p−1)
p(N−1) < θ < 1, we can decrease the summability of |F |, to

cover the pairs (θ, s) belonging to the zone 5 which completes the study of the regularity of solutions of the
problem (1) started in [5].

For k > 0, let Tk : R → R be the truncation function at levels ±k defined by

Tk(s) = max(−k,min(k, s)).

The main result is stated as follows.

Theorem 1.1. Suppose that N(p−1)
p(N−1) < θ < 1 and (2), (3) and (4) hold true. Let |F | ∈ Ls(Ω) with

p′ < s < Np′

p((1−θ)N+θ) . Then, there exists a measurable function u such that:

u ∈ Mr(Ω) and |∇u| ∈ Mq(Ω)

with
r =

(1− θ)Ns(p− 1)

N − s(p− 1)
and q =

(1− θ)Ns(p− 1)

N − θs(p− 1)
,

solution of (1) in the sense that
Tk(u) ∈ W 1,p

0 (Ω)∫
Ω
a(x, u,∇u) · ∇Tk(u− v) dx ≤

∫
Ω
F · ∇Tk(u− v) dx

(5)

for every k > 0 and for every v in W 1,p
0 (Ω) ∩ L∞(Ω).

We point out that the results in Theorem 1.1 cover these in [1, Theorem] and vice-versa. The result we
provide here for a datum in divergence form is exactly the one obtained in [1, Theorem 1.9] for a source
term in suitable Lebesgue spaces. Indeed, going back to [1, Theorem 1.9], and pick a function f in Lm(Ω).
By duality arguments f can be written as f = −div(F ), where |F | ∈ Ls(Ω) with s = Nm

N−m . Thus, by [1,
Theorem 1.9] we obtain the results in Theorem 1.1. Reciprocally, let us put ourselves in the conditions of
Theorem 1.1 with |F | ∈ Ls(Ω). Choosing a function f ∈ Lm(Ω) with m = Ns

N+s . The exponent m is such
that 1 < m < N

(p−1)(N(1−α)+α)+1 . So that one can clearly recover the regularity results in [1, Theorem 1.9].

Remark 1.2. We emphasize that N(p−1)
p(N−1) < θ implies that the range of s is nonempty.

We underline that the gradient of the function u which appears in (5) is defined in [3, lemma 2.1] as the
unique measurable function v : Ω → RN satisfying

∇Tk(u) = vχ{|u|<k}, for almost every x ∈ Ω, ∀k > 0,

where χE is the characteristic function of a measurable set E of Ω. Moreover, if u ∈ W 1,1
0 (Ω) then v coincides

with usual distributional gradient of u. Notice that the use of Tk(u − v) as test function yields a meaning
to each term in (5), although ∇u does not belong to (Lp′(Ω))N . In fact, both integrals of (5) are only on
the set |u − v| ≤ k, and on this set |u| ≤ k + ∥v∥L∞(Ω) = M . Therefore, since assumption (2) implies that
a(x, s, 0) = 0, we have∫

Ω
a(x, u,∇u) · ∇Tk(u− v) dx =

∫
Ω
a(x, TM (u),∇TM (u)) · ∇Tk(u− v) dx,

which finite by the growth condition (3) and∫
Ω
F · ∇Tk(u− v) dx =

∫
Ω
F · ∇Tk(TM (u)− v) dx
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which is finite thanks to Hölder’s inequality since ∇Tk(TM (u)− v) belongs to (Lp(Ω))N .
It is worth recalling that when h is not necessarily a constant function, there is a difficulty in dealing

with problem (1). Note that since no bounds are assumed on the function h, the operator −div a(x, u,∇u)
acting from W 1,p

0 (Ω) into its dual W−1,p′(Ω) may degenerates when its second argument u has large values
and hence it is not coercive. As a consequence, the classical theory of existence of solutions for (1) can not be
applied. To overcome this problem, we consider approximate equations in which we introduce a truncation.

2. Preliminary results

Let Ω be a bounded open set of RN . If u is a measurable function in Ω, we denote by µu(t) its distribution
function, that is

µu(t) = |{x ∈ Ω : |u(x)| > t}|, t ≥ 0,

where |E| denotes the Lebesgue measure of a measurable subset E of RN .
The decreasing rearrangement u∗ of u is defined by

u∗(s) = inf{t ≥ 0 : µu(t) ≤ s} for s ∈ [0, |Ω|].

We refer to [4, 16, 17, 18] for a detailed exposition of basic facts on rearrangements.
For 0 < q < +∞, the Marcinkiewicz space Mq(Ω) consists of all measurable functions u : Ω → R such

that for all t > 0
∥un∥Mq(Ω) := tqµu(t) ≤ c,

for some constant c > 0. We observe that this condition is equivalent to say that

τ
1
q u∗(τ) ≤ c

for all τ ∈]0, |Ω|[ and for some constant c > 0. Recall that the quantity ∥.∥Mq(Ω) does not define a norm
on Mq(Ω) since the triangle inequality is not satisfied (see [11]). We also recall the following connection
between Marcinkiewicz and Lebesgue spaces (see, for instance, [11])

Lq(Ω) ⊂ Mq(Ω)⊂Lr(Ω)

for 0 < r < q. Indeed for the last inclusion, if |{x ∈ Ω : |u(x)| > t}| ≤ Ct−q for all t ≥ 1, then we have∫
Ω
|u|rdx =

∫ ∞

0
|{x ∈ Ω : |u(x)|r > t}|dt

≤ |Ω|+ C

∫ ∞

1
t−

q
r dt

= |Ω|+ rC

q − r
.

Let us point out that in the literature, Marcinkiewicz spaces are also known as weak-Lebesgue spaces. The
following lemma (see [1]) provides a sufficient condition for a measurable function to be in a Marcinkiewicz
space.

Lemma 2.1. Let u be a measurable function belonging to Mr(Ω) for some r > 0, such that, for every k > 0,
Tk(u) belongs to W 1,p

0 (Ω), p > 1. Suppose that∫
Ω
|∇Tk(u)|pdx ≤ ckλ, ∀k > k0,

for some non-negative λ, c and k0. Then |∇u| belongs to M
rp

r+λ (Ω).
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3. A priori estimates

The proof is based on approximation introducing truncations. Let n ∈ N, we define the operator An by

An(u) := −div a(·, Tn(u),∇u).

From (2), we have ∫
Ω
a(x, Tn(u),∇u) · ∇u dx ≥ h(n)

∫
Ω
|∇u|p dx,

so that An is coercive and satisfies the classical Leray-Lions conditions. It follows from [12], that An is
surjective from W 1,p

0 (Ω) into its dual W−1,p′(Ω). Since s > p′, the term divF is an element of W−1,p′(Ω).
Therefore, there exists at least one solution un in W 1,p

0 (Ω) of

−div a(x, Tn(un),∇un) = −divF in Ω,

u = 0 on ∂Ω.
(6)

in the sense that ∫
Ω
a(x, Tn(un),∇un) · ∇v dx =

∫
Ω
F · ∇v dx (7)

for every v in W 1,p
0 (Ω).

Theorem 3.1. Let |F | ∈ Ls(Ω) with p′ < s < Np′

p((1−θ)N+θ) and let un be a solution of (6). Then

un ∈ Mr(Ω) with r =
(1− θ)Ns(p− 1)

N − s(p− 1)
, (8)

and

∥un∥Mr(Ω) ≤

 1− θ

NC
1
N
N

∥F∥
p′
p

(Ls(Ω))N

(
N(s(p− 1)− 1)

N − s(p− 1)

)1− p′
ps

+ |Ω|
1−θ
r

 r
1−θ

,

where CN is the measure of the unit ball in RN . Furthermore we have

|∇un| ∈ Mq(Ω) with q =
(1− θ)Ns(p− 1)

N − θs(p− 1)
, (9)

and

∥∇un∥Mq(Ω) ≤ ∥F∥p
′

(Ls(Ω))N
(|Ω|

1
r + c)θp

(
r(s− p′)

r(s− p′)− θps

) s−p′
s

×
(
|Ω|

r(s−p′)−θps
rs + c

r(s−p′)−θps
rs

)
.

Proof. For ϵ > 0 and t > 0, we use in the formulation of solution (7) the test function v = Tϵ(un − Tt(un)),
which belongs to W 1,p

0 (Ω), obtaining∫
{t<|un|≤t+ϵ}

a(x, Tn(un),∇un) · ∇un dx =

∫
{t<|un|≤t+ϵ}

F · ∇un dx,

where {t < |un| ≤ t+ ϵ} denotes the set {x ∈ Ω : t < |un(x)| ≤ t+ ϵ}.
Assumption (2) yields

hp−1(t+ ϵ)

∫
{t<|un|≤t+ϵ}

|∇un|pdx ≤
∫
{t<|un|≤t+ϵ}

F · ∇undx.
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Since F belongs at least to (Lp′(Ω))N , Hölder’s inequality gives

hp−1(t+ ϵ)

∫
{t<|un|≤t+ϵ}

|∇un|pdx ≤

(∫
{t<|un|≤t+ϵ}

|F |p′dx

) 1
p′
(∫

{t<|un|≤t+ϵ}
|∇un|pdx

) 1
p

.

Since s > p′, we apply again Hölder’s inequality to get

hp(t+ ϵ)

∫
{t<|un|≤t+ϵ}

|∇un|pdx ≤

(∫
{t<|un|≤t+ϵ}

|F |sdx

) p′
s

|{t < |un| ≤ t+ ϵ}|1−
p′
s .

Dividing both sides of the previous inequality by ϵ and then letting ϵ tends to 0+, being h continuous, it
follows that for almost every t > 0

hp(t)

(
− d

dt

∫
{|un|>t}

|∇un|pdx

)
≤

(
− d

dt

∫
{|un|>t}

|F |sdx

) p′
s

(−µ′
n(t))

1− p′
s , (10)

where {|un| > t} denotes the set {x ∈ Ω : |un(x)| > t} and µn(t) stands for the distribution function of un,
that is µn(t) = |{x ∈ Ω : |un(x)| > t}|.
On the other hand, from Fleming-Rishel coarea formula (see [10]) and isoperimetric inequality (see [9]), we
have for almost every t > 0

NC
1
N
N (µn(t))

N−1
N ≤ − d

dt

∫
{|un|>t}

|∇un|dx, (11)

where CN is the measure of the unit ball in RN . Using the Hölder inequality we obtain that for almost every
t > 0

− d

dt

∫
{|un|>t}

|∇un|dx ≤

(
− d

dt

∫
{|un|>t}

|∇un|pdx

) 1
p

(−µ′
n(t))

1− 1
p . (12)

Then, combining (10), (11) and (12) we obtain that for almost every t > 0

h(t) ≤ 1

NC
1
N
N

(
− d

dt

∫
{|un|>t}

|F |sdx

) p′
ps (−µ′

n(t))
1− p′

ps

(µn(t))
N−1
N

,

Integrating between 0 and τ > 0 both sides of this inequality and then using Hölder’s inequality (since
ps > p′) with exponents

ps

p′
and

ps

ps− p′
, we obtain

H(τ)

≤ 1

NC
1
N
N

(∫ τ

0

(
− d

dt

∫
{|un|>t}

|F |sdx

)
dt

) p′
ps
(∫ τ

0

−µ′
n(t)

µn(t)
N−1
N

ps
ps−p′

dt

)1− p′
ps

,

where H(s) =

∫ s

0
h(t)dt. Taking into account that |F | belongs to Ls(Ω), and making a change of variables

in the last integral, we get

H(τ) ≤ 1

NC
1
N
N

∥F∥
p′
p

(Ls(Ω))N

(∫ |Ω|

µn(τ)

dσ

σ
N−1
N

ps
ps−p′

)1− p′
ps

.
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A straightforward calculation of the integral in the right-hand side and the fact that τ1−θ ≤ (1− θ)H(τ)+1,
for τ > 0, allow us to have

τ1−θ ≤ 1− θ

NC
1
N
N

∥F∥
p′
p

(Ls(Ω))N

(
N(s(p− 1)− 1)

N − s(p− 1)

)1− p′
ps

µn(τ)
−N−s(p−1)

Ns(p−1) + 1,

which gives

τ
(1−θ)Ns(p−1)

N−s(p−1) µn(τ)

≤

 1− θ

NC
1
N
N

∥F∥
p′
p

(Ls(Ω))N

(
N(s(p− 1)− 1)

N − s(p− 1)

)1− p′
ps

+ |Ω|
N−s(p−1)
Ns(p−1)


Ns(p−1)
N−s(p−1)

.

This means that
un ∈ Mr(Ω) with r =

(1− θ)Ns(p− 1)

N − s(p− 1)
.

We now turn to the estimation of the gradients of solutions un. Going back to (10), dividing by hp(t),
integrating both sides of the inequality between 0 and k, (k ≥ 1), and then using Hölder’s inequality we
obtain ∫

{|un|≤k}
|∇un|pdx ≤

(∫
{|un|≤k}

|F |sdx

) p′
s
(∫ k

0

−µ′
n(t)

h
ps

s−p′ (t)
dt

)1− p′
s

≤ ∥F∥p
′

(Ls(Ω))N

(∫ |Ω|

µn(k)
(1 + u∗n(σ))

θps
s−p′ dσ

)1− p′
s

.

Since un ∈ Mr(Ω), there exists a constant c > 0 such that t
1
r u∗n(t) ≤ c. Hence,

∫
{|un|≤k}

|∇un|pdx ≤ ∥F∥p
′

(Ls(Ω))N

(∫ |Ω|

µn(k)
(1 + cσ− 1

r )
θps
s−p′ dσ

)1− p′
s

≤ ∥F∥p
′

(Ls(Ω))N
(|Ω|

1
r + c)θp

(∫ |Ω|

µn(k)
σ
− θps

s−p′ dσ

)1− p′
s

= C1

(
|Ω|

r(s−p′)−θps
rs − µ

r(s−p′)−θps
rs

n (k)

)
.

where C1 = ∥F∥p
′

(Ls(Ω))N
(|Ω|

1
r + c)θp

(
r(s− p′)

r(s− p′)− θps

) s−p′
s

. Again, since un ∈ Mr(Ω) we have µn(k) ≤
c

kr
.

Therefore, we obtain ∫
{|un|≤k}

|∇un|pdx ≤ C1

(
|Ω|

r(s−p′)−θps
rs + c

r(s−p′)−θps
rs kλ

)
,

where λ = θp− r

(
1− p′

s

)
. The assumption made on s ensures that λ > 0.

Then, for every k ≥ 1 we obtain ∫
{|un|≤k}

|∇un|pdx ≤ C2k
λ,

where
C2 = C1

(
|Ω|

r(s−p′)−θps
rs + c

r(s−p′)−θps
rs

)
.
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A straightforward calculation shows that
r + λ = p

r

q
.

An application of Lemma 2.1 implies that

|∇un| ∈ Mq(Ω).

Lemma 3.2. Let un be a solution of (6). Then, there exists a measurable function u such that:

un → u in measure and a.e. in Ω (13)

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω), ∀k > 0. (14)

Proof. Let k > 0. The use of Tk(un) as test function in (7) yields∫
Ω
|∇Tk(un)|pdx ≤ ∥F∥p

′

(Ls(Ω))N
|Ω|1−

p′
s (1 + k)θp.

So that Tk(un) is bounded in W 1,p
0 (Ω) independently of n. Therefore, there exists (see [3]) a measurable

function u such that, up to a subsequence,

un → u in measure and a.e. in Ω

Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω).

4. Almost everywhere convergence of the gradients of solutions

Arguing as in [1], we shall prove the almost everywhere convergence of the gradients. Let 0 < σ <
q

2p
(<

1). Consider

In =

∫
Ω
{(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u)}σdx.

We split In on the sets
Ak = {x ∈ Ω : |u(x)| > k}

and
Ck = {x ∈ Ω : |u(x)| ≤ k},

obtaining
In = I1(n, k) + I2(n, k)

where
I1(n, k) =

∫
Ak

{(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u)}σdx

and
I2(n, k) =

∫
Ck

{(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u)}σdx.

Using (3) we deduce that there exists a constant c such that

I1(n, k) ≤ c

(∫
Ak

(a0(x))
p′σdx+

∫
Ak

(|un|pσ + |∇un|pσ + |∇u|pσ)dx
)
.
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Let τ =
q

2pσ
. By Hölder’s inequality we obtain

I1(n, k)

≤ c

(∫
Ω
(a0(x))

p′dx

)σ

|Ak|1−σ

+ c

((∫
Ω
|un|

q
2dx

) 1
τ

+

(∫
Ω
|∇un|

q
2dx

) 1
τ

+

(∫
Ω
|∇u|

q
2dx

) 1
τ

)
|Ak|1−

1
τ .

Note that Lemma 3.2 and Lemma 2.1 enable us to get |∇u|∈Mq(Ω)⊂L
q
2 (Ω). From (8) and (9) we obtain

I1(n, k) ≤ c
(
|Ak|1−σ + |Ak|1−

1
τ

)
,

where c is a constant not depending on n. Therefore, we get

lim
k→∞

lim
n→∞

I1(n, k) = 0. (15)

Observe that on Ck one has Tk(u) = u and since the integrand function is positive we have

I2(n, k) ≤ I3(n, k)

where
I3(n, k) =

∫
Ω

{
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u))) · (∇un −∇Tk(u))

}σ

dx.

We fix j > 0 and split the integral in I3(n, k) on the sets {|un−Tk(u)| > j} and {|un−Tk(u)| ≤ j}, obtaining

I3(n, k) = I4(n, k, j) + I5(n, k, j),

where
I4(n, k, j) =

∫
{|un−Tk(u)|>j}

{
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))

·(∇un −∇Tk(u))

}σ

dx

and
I5(n, k, j) =

∫
{|un−Tk(u)|≤j}

{
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u)))

·(∇un −∇Tk(u))

}σ

dx

By (8) the measure of the set {|un − Tk(u)| > j} tends to zero as j tends to ∞ uniformly in n and k. So
that, reasoning as for I1(n, k) we obtain

lim
j→∞

lim
k→∞

lim
n→∞

I4(n, k, j) = 0. (16)

Applying the Hölder inequality with exponents
1

σ
and

1

1− σ
, we get

I5(n, k, j) =

∫
Ω

{
(a(x, Tn(un),∇un)− a(x, Tn(un),∇Tk(u))) · ∇Tj(un − Tk(u))

}σ

dx

≤ |Ω|1−σ (I6(n, k, j)− I7(n, k, j))
σ ,
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where
I6(n, k, j) =

∫
Ω
a(x, Tn(un),∇un) · ∇Tj(un − Tk(u))dx

and
I7(n, k, j) =

∫
Ω
a(x, Tn(un),∇Tk(u)) · ∇Tj(un − Tk(u))dx.

Using Tj(un − Tk(u)) as test function in (7), we obtain

I6(n, k, j) =

∫
Ω
F · ∇Tj(un − Tk(u))dx.

Note that on the set {|un − Tk(u)| ≤ j} we have |un| ≤ k + j. Thus, by (14) we get

lim
n→∞

I6(n, k, j) =

∫
Ω
F · ∇Tj(u− Tk(u))dx

=

∫
{|u|>k}

F · ∇Tj(u)dx.

Thus
lim
k→∞

lim
n→∞

I6(n, k, j) = 0. (17)

Let M = k + j. For n > M one has

I7(n, k, j) =

∫
Ω
a(x, TM (un),∇Tk(u)) · ∇Tj(un − Tk(u))dx.

By (13) and Viltali’s theorem we obtain that

a(x, TM (un),∇Tk(u)) → a(x, TM (u),∇Tk(u))

strongly in (Lp′(Ω))N as n tends to +∞. It follows by (14) that

lim
n→∞

I7(n, k, j) =

∫
Ω
a(x, TM (u),∇Tk(u)) · ∇Tj(u− Tk(u))dx

=

∫
{|u|>k}

a(x, u, 0) · ∇Tj(u)dx

= 0.

(18)

Combining (15), (16), (17) and (18) we obtain

lim
n→∞

In = 0.

Since the integrand function in In is positive, we have

{(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u)}σ → 0

strongly in L1(Ω). Hence, there exists a subsequence still indexed by n, such that

(a(x, Tn(un(x)),∇un(x))− a(x, Tn(un(x)),∇u(x))) · (∇un(x)−∇u(x)) → 0.

for almost every x in Ω. As in [1] we conclude that

∇un → ∇u a.e. in Ω. (19)
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5. Passage to the limit

Let v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and let k > 0. Taking Tk(un − v) as test function in (7) we obtain∫

Ω
a(x, Tn(un),∇un) · ∇Tk(un − v) dx =

∫
Ω
F · ∇Tk(un − v) dx.

By (14) we have

lim
n→∞

∫
Ω
F · ∇Tk(un − v) dx =

∫
Ω
F · ∇Tk(u− v) dx.

Taking into account that on the set {|un − v| < k} we have |un| ≤ k + ∥v∥∞ := M, we split the left-hand
side, for n > M, as the sum ∫

{|un−v|≤k}
a(x, TM (un),∇TM (un)) · ∇TM (un) dx

−
∫
{|un−v|≤k}

a(x, TM (un),∇TM (un)) · ∇v dx.

Since {a(x, TM (un),∇TM (un))} is bounded in (Lp′(Ω))N , by (13) and (19) we have that

a(x, TM (un),∇TM (un)) ⇀ a(x, TM (u),∇TM (u))

weakly in (Lp′(Ω))N . Thus, we get

lim
n→∞

∫
{|un−v|≤k}

a(x, TM (un),∇TM (un)) · ∇TM (un) dx

=

∫
{|u−v|≤k}

a(x, u,∇u) · ∇v dx.

By (2), the integrand function a(x, TM (un),∇TM (un)) ·∇TM (un) is non negative. Therefore, Fatou’s lemma
allows us to have ∫

{|u−v|≤k}
a(x, u,∇u) · ∇u dx

≤ lim inf
n→∞

∫
{|un−v|≤k}

a(x, TM (un),∇TM (un)) · ∇TM (un) dx.

Finally we get ∫
Ω
a(x, u,∇u) · ∇Tk(u− v) dx ≤

∫
Ω
F · ∇Tk(u− v) dx.

Furthermore, we have u ∈ Mr(Ω) and |∇u| ∈ Mq(Ω). The proof of the Theorem 1.1 is then achieved.

Remark 5.1. The case s = p′ which can not be considered in Theorem 1.1, has been treated in [1, Theorem

5.1]. The authors proved that the approximation solutions un of (6) belong to L
(1−θ)Np

N−p (Ω) ⊂ M
(1−θ)Np

N−p (Ω).
To get information about the gradient of un we use of Tk(un), for k ≥ 1, as test function in (7) obtaining

1

(1 + k)θ(p−1)

∫
Ω
|∇Tk(un)|pdx ≤

∫
Ω
F · ∇Tk(un)dx.

Hence, by the Hölder inequality we get∫
Ω
|∇Tk(un)|pdx ≤2θp∥F∥p

′

p′k
θp.

Therefore, an application of Lemma 2.1 gives

|∇un| ∈ M
(1−θ)Np
N−θp (Ω).

As above, we get the existence of a measurable function u with the properties (13), (14) and (19). Passing
to the limit as previously done, we obtain that u is a solution of (1) in the sense of (5). Moreover, we have

u ∈ M
(1−θ)Np

N−p (Ω) and |∇u| ∈ M
(1−θ)Np
N−θp (Ω).
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