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Abstract

In this paper, we give an estimate of d(xn, x
∗) for a sequence {xn} in a b-metric space that satisfies the

contractive condition
d(xn+1, xn) ≤ λd(xn, xn−1),

for all n ∈ N, where λ ∈ (0, 1). In addition, we give another proof for the convergence of a sequence {xn}.
Examples of estimation for Banach’s, Kannan’s, and Reich’s fixed point theorems are given. In the end, we
give some open problems in which research can be continued.
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1. Introduction and Preliminaries

One significant consequence of the Banach fixed point theorem[6] is its provision for estimating the error
within the Picard iterative sequence. This estimation comes in two valuable forms: a priori estimate, used
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at the outset to predict the number of steps required to achieve a desired level of accuracy, and a posteriori
estimate, which can be employed during intermediate steps to assess the convergence rate, allowing for
comparison against the initial prediction made by the a priori estimate.

Theorem 1.1. [6] Let T : X → X be the contraction mapping in a complete metric space X, x0 be the
initial point of the Picard iterative sequence xn+1 = Txn, and let x∗ be the fixed point of the mapping T . The
following error estimates hold:

(i) d(xn, x
∗) ≤ λn

1− λ
· d(x0, x1);

(ii) d(xn+1, x
∗) ≤ λ

1− λ
· d(xn, xn+1).

for all n ∈ N.

While the error estimates for Picard iteration are powerful within standard metric spaces, it’s natural to
wonder if similar results hold in more generalized settings. This leads us directly to the concept of b-metric
spaces. In 1993, Czerwik [11] proposed the terms b-metric and b-metric space. Bakhtin [5] called them "almost
metric spaces." But these kinds of spaces were earlier considered under various names (see the Introduction
to [10]). In [10], one says that Bakhtin proposed the term "quasi-metric," but the exact translation is that
of "almost metric." Also, according to the historical notes in the recent paper of Berinde and Pǎcurar [7],
it appears that the concept of b-metric space (under the name "quasimetric space") was introduced before
Bakhtin and Czerwik, by Vulpe et al. [30]. The theory of fixed points in b-metric spaces has expanded in
the past ten years (see [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]).
We list some well-known facts about b-metric spaces.

Definition 1.2. Let X be a nonempty set and s ∈ [1,+∞). A mapping d : X × X → [0,+∞) is called a
b-metric if:

(1b) d(x1, x2) = 0 if and only if x1 = x2,

(2b) d(x1, x2) = d(x2, x1),

(3b) d(x1, x3) ≤ s[d(x1, x2) + d(x2, x3)],

for all x1, x2, x3 ∈ X. In this case (X, d, s) is called a b-metric space.

Remark 1.3. If s = 1, then the b-metric space is metric. The notions of convergent sequence, Cauchy
sequence, and completeness in b-metric spaces are defined as in metric spaces.

Remark 1.4. The space lp = {{xn} ⊂ R :
+∞∑
n=1

|xn|p < +∞}, p ∈ (0, 1), together with the function dp :

lp × lp → R, defined by

dp(x, y) =

(
+∞∑
n=1

|xn − yn|p
) 1

p

,

where x = {xn}, y = {yn} ∈ lp, is not a metric space (the function dp do not satisfy the triangle inequality),
but (lp, dp, s) is a b-metric space with s = 2

1
p
−1, [14, 19].

Remark 1.5. The b-metric need not be continuous (see for example [16]).

Definition 1.6. Let (X, d, s) be a b-metric space, {xn} a sequence in X and x ∈ X.
(a) The sequence {xn} is convergent and converges to x, if for every ϵ > 0 there exists nϵ ∈ N such that
d(xn, x) < ϵ for all n > nϵ. We denote this by lim

n→+∞
xn = x or xn → x as n → +∞.

(b) The sequence {xn} is called Cauchy if for every ϵ > 0 there exists nϵ ∈ N such that d(xn, xm) < ϵ for all
n,m > nϵ.
(c) If every Cauchy sequence in X converges to some x ∈ X then (X, d, s) is called a complete b-metric space.
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Recently, Miculescu and Mihail [20] (Lemma 2.2) and Suzuki [29] (Lemma 6), see also Mitrović [21] (Lemma
2.3) obtained following result.

Lemma 1.7. Let (X, d, s) be a b-metric space and sequence {xn} ⊆ X. If there exists λ ∈ [0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1), (1)

for all n ∈ N, then {xn} is Cauchy.

Remark 1.8. From Lemma 1.7 we obtain that {xn} is Cauchy if there exist a ∈ [0,+∞) and λ ∈ [0, 1) such
that d(xn+1, xn) ≤ λna for any n ∈ N.

In next section we give an estimate for d(xn, x
∗) for a sequence {xn} in a b-metric space that fulfills the

condition (1). In addition, we give another proof for the convergence of a sequence {xn}.

2. Estimation in b - metric spaces

In this section, we will denote by ⌊x⌋ floor function (greatest integer less than or equal to x) and by ⌈x⌉
ceiling function (least integer greater than or equal to x). Firstly, we give an auxiliary lemma that proves
the main result.

Lemma 2.1. Let (X, d, s) be a complete b-metric space and let {xn} be a sequence in X. Assume that there
exists λ ∈ [0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1), (2)

for any n ∈ N. Then the following estimate applies for i < j

d(xi, xj) ≤ sλi(1 + sλ+ . . .+ sj−i−2λj−i−2 + sj−i−2λj−i−1)d(x0, x1) (3)

Proof. Let i, j ∈ N and i < j. From condition (3b) we obtain

d(xi, xj) ≤ s[d(xi, xi+1) + d(xi+1, xj)]

≤ sλid(x0, x1) + s2[d(xi+1, xi+2) + d(xi+2, xj)]

≤
(
sλi + s2λi+1

)
d(x0, x1) + s3[d(xi+2, xi+3) + d(xi+3, xj)]

≤
(
sλi + s2λi+1 + s3λi+2

)
d(x0, x1) + s4[d(xi+3, xi+4) + d(xi+4, xj)]

...
≤ sλi(1 + sλ+ . . .+ sj−i−2λj−i−2 + sj−i−2λj−i−1)d(x0, x1).

For sλ ̸= 1, since s > 1 we can estimate distance

d(xi, xj) ≤ sλi 1− (sλ)j−i

1− sλ
d(x0, x1).

Our main result is the following theorem.

Theorem 2.2. Let (X, d, s) be a complete b-metric space and let {xn} be a sequence in X. Assume that
there exists λ ∈ [0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1),

for any n ∈ N. Let
n0 = min{j ∈ N | sλj < 1}. (4)
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Then for sλ ̸= 1

d(xn, x
∗) ≤ Cs2λ

n0⌊ n
n0

⌋
(
1 +

s2

1− sλn0

)
, (5)

where x∗ = lim
n→+∞

xn and C = sd(x0, x1)
1− (sλ)n0

1− sλ
.

Proof. Let n, p ∈ N. From condition (3b) we obtain

d(xn, xn+p) ≤ sd(xn, xn0⌊ n
n0

⌋) + s2[d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) + d(xn0⌊n+p
n0

⌋, xn+p)]. (6)

From n0(
n
n0

− 1) < n0⌊ n
n0
⌋ ≤ n0

n
n0

we obtain 0 ≤ n− n0⌊ n
n0
⌋ < n0. Applying Lemma 2.1 we have

d(xn, xn0⌊ n
n0

⌋) ≤ sλ
n0⌊ n

n0
⌋
d(x0, x1)

1− (sλ)
n−n0⌊ n

n0
⌋

1− sλ
.

So,
d(xn, xn0⌊ n

n0
⌋) ≤ Cλ

n0⌊ n
n0

⌋
. (7)

In the same way, we have
d(xn0⌊n+p

n0
⌋, xn+p) ≤ Cλ

n0⌊n+p
n0

⌋
. (8)

From (8) we conclude that
lim

p→+∞
d(xn0⌊n+p

n0
⌋, xn+p) = 0. (9)

Further, we have

d(x(n+1)n0
, xnn0) ≤ sn0 [d(x(n+1)n0

, x(n+1)n0−1) + · · ·+ d(xnn0+1, xnn0)]

≤ sn0(λ(n+1)n0−1 + · · ·+ λnn0)d(x1, x0)

≤ sn0λnn0
d(x1, x0)

1− λ
.

So,
d(x(n+1)n0

, xnn0) ≤ Cµn, (10)

where, µ = λn0 . Using (4) we have that µs < 1. From (3b) and (10) we obtain

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

s
j+1−n0⌊ n

n0
⌋
d(xn0j , xn0(j+1))

+ s
n0⌊n+p

n0
⌋−1−n0⌊ n

n0
⌋
d(xn0(n0⌊n+p

n0
⌋−1), xn0⌊n+p

n0
⌋)

≤
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

s
j+1−n0⌊ n

n0
⌋
Cµj

+ s
n0⌊n+p

n0
⌋−1−n0⌊ n

n0
⌋
Cµ

n0(⌊n+p
n0

⌋−1)

= Cs
1−n0⌊ n

n0
⌋
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

(sµ)j

+ Cs
n0−1−n0⌊ n

n0
⌋
(sµ)

n0(⌊n+p
n0

⌋−1)
,
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Now, we have

lim
p→+∞

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤ Cs
1−n0⌊ n

n0
⌋ (sµ)

n0⌊ n
n0

⌋

1− sµ

= Cs
µ
n0⌊ n

n0
⌋

1− sµ
.

Therefore,

lim
p→+∞

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤ Cs
λ
⌊ n
n0

⌋

1− sλn0
. (11)

From (6), (7), (8) and (11) we obtain

lim
p→+∞

d(xn, xn+p) ≤ Csλ
n0⌊ n

n0
⌋
(
1 +

s2

1− sλn0

)
. (12)

On the other hand,
d(xn, x

∗) ≤ s[d(xn, xn+p) + d(xn+p, x
∗)], (13)

now, from (12) and (13), if p → +∞ we obtain (5).

Example 2.3. Consider the sequence x0 = (1, 12 ,
1
22
, . . .) in l 1

2
space. It follows from the Remark 1.4 that

s = 2. Also, after basic calculations and using the definition of the distance function from Remark 1.4, we
have

d (xn+1, xn) = d

(
1

2
xn, xn

)
≤ 1

2
d(xn, xn−1).

Therefore, we have a special case where sλ = 1.

As we can see in Example 2.3 and Theorem 2.2 there is a minor issue with sλ = 1 so we will now provide
a proof where that assumption is not necessary. While this new proof overcomes the previous issue, there is
a reduction in the precision of the inequality compared to the first one.

Theorem 2.4. Let (X, d, s) be a complete b-metric space and let {xn} be a sequence in X. Assume that
there exists λ ∈ (0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1), (14)

for any n ∈ N. Let
n0 = min{j ∈ N | sλj < 1}. (15)

Then

d(xn, x
∗) ≤ Cs2λ

n0⌊ n
n0

⌋
(
1 +

s2

1− sλn0

)
, (16)

where x∗ = limn→+∞ xn and C = sn0 d(x1,x0)
1−λ .

Proof. Let n, p ∈ N. From condition (3b) we obtain

d(xn, xn+p) ≤ sd(xn, xn0⌊ n
n0

⌋) + s2[d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) + d(xn0⌊n+p
n0

⌋, xn+p)]. (17)

From n0(
n
n0

− 1) < n0⌊ n
n0
⌋ ≤ n0

n
n0

we obtain 0 ≤ n− n0⌊ n
n0
⌋ < n0. So, we have

d(xn, xn0⌊ n
n0

⌋) ≤ sn0 [d(xn, xn−1) + · · ·+ d(xn0⌊ n
n0

⌋+1, xn0⌊ n
n0

⌋)]

≤ sn0(λn−1 + · · ·+ λ
n0⌊ n

n0
⌋
)d(x1, x0)

≤ sn0λ
n0⌊ n

n0
⌋d(x1, x0)

1− λ
.
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So,
d(xn, xn0⌊ n

n0
⌋) ≤ Cλ

n0⌊ n
n0

⌋
. (18)

In the same way, we have
d(xn0⌊n+p

n0
⌋, xn+p) ≤ Cλ

n0⌊n+p
n0

⌋
. (19)

From (19) we conclude that
lim

p→+∞
d(xn0⌊n+p

n0
⌋, xn+p) = 0. (20)

Further, we have

d(x(n+1)n0
, xnn0) ≤ sn0 [d(x(n+1)n0

, x(n+1)n0−1) + · · ·+ d(xnn0+1, xnn0)]

≤ sn0(λ(n+1)n0−1 + · · ·+ λnn0)d(x1, x0)

≤ sn0λnn0
d(x1, x0)

1− λ
.

So,
d(x(n+1)n0

, xnn0) ≤ Cµn, (21)

where, µ = λn0 . Using (15) we have that µb < 1. From (3b) and (21) we obtain

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

s
j+1−n0⌊ n

n0
⌋
d(xn0j , xn0(j+1))

+ s
n0⌊n+p

n0
⌋−1−n0⌊ n

n0
⌋
d(xn0(n0⌊n+p

n0
⌋−1), xn0⌊n+p

n0
⌋)

≤
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

s
j+1−n0⌊ n

n0
⌋
Cµj

+ s
n0⌊n+p

n0
⌋−1−n0⌊ n

n0
⌋
Cµ

n0(⌊n+p
n0

⌋−1)

= Cs
1−n0⌊ n

n0
⌋
n0⌊n+p

n0
⌋−2∑

j=n0⌊ n
n0

⌋

(sµ)j

+ Cs
n0−1−n0⌊ n

n0
⌋
(sµ)

n0(⌊n+p
n0

⌋−1)
,

Now, we have

lim
p→+∞

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤ Cs
1−n0⌊ n

n0
⌋ (sµ)

n0⌊ n
n0

⌋

1− sµ

= Cs
µ
n0⌊ n

n0
⌋

1− sµ
.

Therefore,

lim
p→+∞

d(xn0⌊ n
n0

⌋, xn0⌊n+p
n0

⌋) ≤ Cs
λ
⌊ n
n0

⌋

1− sλn0
. (22)

From (6), (7), (8) and (11) we obtain

lim
p→+∞

d(xn, xn+p) ≤ Csλ
n0⌊ n

n0
⌋
(
1 +

s2

1− sλn0

)
. (23)

On the other hand,
d(xn, x

∗) ≤ s[d(xn, xn+p) + d(xn+p, x
∗)], (24)
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now, from (23) and (24), if p → +∞ we obtain (16).

Remark 2.5. Note that from (12) we obtain another proof of the result of Miculescu and Mihail [20] (Lemma
2.2) and Suzuki [29] (Lemma 6).

Remark 2.6. Theorem 2.2 is also valid for b-metric like spaces [2], that is, when we replace condition (1b)
in Definition 1.2 with condition

d(x1, x2) = 0 implies x1 = x2. (25)

Remark 2.7. Let (X, d, s) be a complete b-metric space and let a mapping T : X → X. If the sequence of
iterates {Tnx} converges to fixed point x∗ for any x ∈ X then from (5) for a given ϵ > 0 we can determine
nε ∈ N such that it is

d(xnϵ , x
∗) ≤ ε. (26)

Thus, the estimate (5) can be used in a large number of results on fixed points in b metric spaces, where the
sequence iterates {Tnx} converges to a fixed point x∗. We can use it for theorems like Banach, Kannan,
Chatterje, Reich, Ćirić, Gusseman, Hardy-Rogers, etc. Also, the estimation of (5) can be used for results
about common fixed points, for example, Jungck, Fisher type, and for multivalued mappings, for example,
Nadler type results.

Example 2.8. (Estimate of Banach, Kannan and Reich type contraction) As we mentioned in Remark 2.7
estimate can be used in a large number of results about fixed points in b-metric spaces. First we determine
nε for the Banach contraction with parameter λ ∈ (0, 1). Set ε > 0, then, from (5), we get

Cs2λ
n0⌊ n

n0
⌋
(
1 +

s2

1− sλn0

)
< ε. (27)

For the last inequality to hold, from basic calculations, it is necessary to choose n ≥ nε, where

nε =

⌈
logλ

ε(1− sλn0)

Cs2(1 + s2 − sλn0)

⌉
. (28)

For Kannan contraction T : X → X satisfying d(Tx, Ty) ≤ α[d(x, Tx)+d(y, Ty)], where 0 < α < 1
2 , we can

determine nε as we can determine nε by replacing λ with α
1−α in (28). For Reich contraction T : X → X,

satisfying d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty), where α, β, γ ∈ (0, 1) is such that h α+ β + γ < 1,
we can determine nε by replacing λ with α+γ

1−β in (28).

Remark 2.9. In metric space (X, d) we have that s = 1 and n0 = 1. So, from Theorem 2.4 we obtain

d(xn, x
∗) ≤ λn

1− λ

(
1 +

1

1− λ

)
d(x0, x1), (29)

and from Theorem 2.2 we obtain

d(xn, x
∗) ≤ λn(2− λ)

1− λ
d(x0, x1), (30)

which is still a weaker estimate than the known estimate in metric spaces

d(xn, x
∗) ≤ λn

1− λ
d(x0, x1).

Therefore, the natural question is:
Can the inequality (30) be improved?

Remark 2.10. In paper [15] George et al introduced rectangular b-metric space. Rectangular b-metric spaces
are a generalization of b-metric spaces. Therefore, an idea for further research is to obtain an estimate for
d(xn, x

∗) in rectangular b metric spaces.
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