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Abstract

In this paper, we obtain some fixed point results involving a-admissibility for multi-valued F-contractions
in the framework of complete S-metric spaces. Appropriate illustrations are provided to support the main
results. Finally, an application is developed by demonstrating the existence of a solution to an integral
equation. Also, as an application, we establish the existence and uniqueness of the solutions to differential
equations in the framework of fractional derivatives involving Mittag-Leffler kernals via the fixed point
technique. Our results extend and generalize many well-known results in the existing literature.

Keywords: Fixed point, multivalued (a, F)-contraction, a-admissible mapping, S-metric space.
2010 MSC: 47TH10, 54H25.

1. Introduction

In 1922, Banach [7] proposed the well-known Banach contraction principle (BCP), which employed a
contraction mapping in the domain of complete metric spaces. According to the BCP, in a complete metric
space (X, d), a mapping ¢g: X — X satisfying the contraction condition on X i.e.,

d(g¢, gn) < kd(¢,m),
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for all (,n € X, provided k € [0, 1), has a unique fixed point.

The BCP was generalized using varieties of mappings on many extensions of metric spaces. In 1969,
Nadler [16] generalized the BCP for multivalued mappings. In order to optimize a variety of approximation
theory problems, it is much more advantageous to use proper fixed point results for multivalued transforma-
tions. A new type of contraction called F-contraction was introduced by Wardowski [30]. He proved a new
fixed point result regarding F-contraction. In this way, Wardowski [30] generalized the Banach contraction
principle in a different manner from the well-known results in the literature. Altun et al. [1] focused on the
existence of the fixed point for multivalued F-contractions and proved certain fixed point theorems in the
framework of metric spaces. Many extensions and generalizations of BCP were produced and the existence
and uniqueness of fixed point were proved.

Samet et al. [24] introduced the concept of a-admissible mappings. The a-admissible mappings notion
has been used in many works, see for example [4, 5, 6, 10, 13, 21, 22|.

Miaiki in |15], introduced the notion of a-admissible mapping in the setting of S-metric spaces. Recently,
Javed et al. [11] introduced the concept of Fi-contraction which is a generalization of F-contraction and
proved a fixed point theorem in the setting of S-metric spaces.

Recently, Gairola and Khantwal 9] introduced multi-valued contraction in S-metric space and proved
some fixed point theorems for multi-valued maps on S-metric space. His results extend and generalise the
results of Nadler [16], Sedghi et al. [26] and others. In [20], Pourgholam et al. proved some common fixed
point theorems for single valued and multi-valued mappings in S-metric spaces which generalized the results
of [12, 31] (see, also [18]).

Very recently, Saluja and Nashine [23] proved some fixed point theorems for generalized F-contractions
on S-metric spaces and presented a novel fixed-circle solution as an application on S-metric spaces through
generalized F-contractions.

This paper initiates the concept of new multi-valued contractions for a mapping involving a member
of the family of functions Fgs and a given function a: M? — [0,400) in the context of S-metric space.
We establish some fixed point results for such contractions. In addition, we illustrate our main result with
concrete examples. Some applications are also included for a wider understanding of the established result.

2. Preliminaries

Take RT = [0, +00) and denote by N the set of positive integers. Throughout the paper, the compact
subset of the underlying space M will be denoted by K (M).
In this part, we recall some essential concepts and consequences that will set a base for our main result.

Definition 2.1. ([26]) Let M # () be a set. A map S: M3 — RT fulfilling the following axioms on M is
called an S-metric on M:
S(1) S(m1,ma,ms) = 0 if and only if m; = mg = mg,
S(2) S(my,ma,m3) < S(my1,m1, myg) + S(ma, ma, myg) + S(ms, ms, my), for all my, ma, ms, my € M.
The pair (M, S) is said to be an S-metric space (SMS).

Example 2.2. (]20]) Let M = R* and A > 0. Define S: M® — R by

0, if mi1 = mgo = ms,
max{mi, mg,m3} — X\ otherwise.

S(mi, ma, m3) = {
Then S is an S-metric space on M and is called the max S-metric.
Example 2.3. (]20]) Let M = R*. Define S: M?® — R* as

O, if mi1 = mo = ms,
mi + mso + 2mg  otherwise.

S(mi, ma, ms) — {

Then S is an S-metric space on M.
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Example 2.4. ([26]) Let M = R and S(mq,m2, mg) = |m1 — ms| + |ma — mg|. Then S is an S-metric on
M, named the usual S-metric on M.

Definition 2.5. ([26]) Let (M, S) be an S-metric space.

(al) If for every m € A there exists k > 0 such that Bg(m, k) C A, then the subset A is called an open
subset of M.

(a2) A subset A of M is said to be S-bounded if there exists & > 0 such that S(m,m,n) < k for all
m,n € A.

(a3) A sequence {m,} in M converges to my if and only if S(m,,m,,mg) — 0 as r — oo. That is,
for each € > 0 there exists rg € N such that for all » > rq, S(m,,m,,mg) < € and we denote this by
lim, oo myr = myo.

(a4) A sequence {m,} in M is called Cauchy sequence if for each € > 0, there exists rg € N such that for
all r, s > rg, S(my, my,mg) < €.

(ab) The S-metric space (M, S) is said to be complete if every Cauchy sequence is convergent.

Example 2.6. (|26]) Let (M, S) be as in Example 2.4. Then (M, S) is complete.

Lemma 2.7. ([26], Lemma 2.5) Let (M, S) be an S-metric space. Then, we have S(my, m1,ma) = S(ma, ma, m1)
for all my, mo € M.

Lemma 2.8. (/20/, Lemma 2.12) Let (M, S) be an S-metric space. If m, — m and n, — n as r — oo, then
S(my, my,ny) = S(m,m,n) as r — oo.

Some useful concept regarding Hausdorff distance under the structure of S-metric spaces have been
suggested by Gairola and Khantwal [9] as follows.

Definition 2.9. ([9]) Let (M, S) be an S-metric space and C'B(M) be the collection of all nonempty bounded
and closed subset of M. For, P;, P» € CB(M), the Hausdorff S-metric on CB(M) induced by S is given as
follows:

Sg(Mq, M1, M3) ::max{ sup S(mq,my, Ms), sup S(mg,mz,Ml)},

mi1EM1 mo€Ma

where S(my,mi, Mg) = inf{S(m1, m1,ma) : me € Ms}. Then, Sy is called the Hausdorff S-distance on
CB(M) induced by S-metric.

Definition 2.10. ([28]) Let (M, S) be an S-metric space, m € M and M;, Mo C M, then the distance of
the point m to the set M is defined as

S(m,m, My) := inf{S(m,m,n) : n € My}.
It is clear by the definition of S(m,m, Mj) that S(m,m, M;) =0 & m € Mj.

Definition 2.11. ([17]) Let (M, S) be an S-metric space and M7 be a non-void subset of M. The diameter
of M is defined by
diam(My) := sup{S(m,m,n) : m,n € My}.

If M; is S-bounded, then diam(M;) < 4o0.
Lemma 2.12. (/9/, Lemma3.1) Let (M, S) be an S-metric space and My, Mo € CB(M). Then for each

my € My, we have

S(my,m1, Ma) < Sg(My, My, Ma).

Lemma 2.13. (/9/, Lemma 3.2) If My, My € CB(M). Then for each m; € My, then for each n > 0 there
exists mo € My such that
S(mi,m1,mg) < Sg(My, M1, M2) +n.
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Lemma 2.14. Let (M, S) be an S-metric space. Consider two nonempty subsets My, My € CB(M) and
ke > 1. For some my € My, there exists my € My so that

S(ml,ml,mg) S ki* SH(Ml,Ml,MQ).
Example 2.15. Let M = R, M; = [m1 — a,m1 + a], My = [ma — ,m2 + 8] and 0 < a < 8 where
mi,mo € M. Let S: M® — R be defined by S(mq,mz, m3) = |mq —ms|+|ma —ms| for all my, ma, mg € M.

It can be seen that M, My € CB(M) and so

Sg(Mi, M, M3) = maX{ sup S(mi,my, Mz), sup 5(m2,m2,M1)}

miEM1 moEMa
= max{2 sup |mi1 — Mas|, 2 sup mg—./\/ll‘}
mi1EM1 moEMo

max {2|(ms — B) — (m1 — )|, 2/(ma + ) — (1 + )|}

2max {|(m — m1) = (8 = @), (mz — m1) + (8 - )|}
2[(mg —m1) — (B — o)

2(lmg —ma| = |B — af)

= 2|m1 —ma| — 2|5 —a| = S(m1,m1,ma) — 2(F — «).

AV

So,
S(my,my,me) < Sg(My, M1, Ms3) +n, where n = 2(f — «).

Definition 2.16. (|9]) Let (M,S) be an S-metric space. A function 7: M — CB(M) is said to be a
multi-valued contraction on M if there exists a constant ¢ € [0,1) such that

Su(Tmy, Tmi, Tma) < cS(mi,mi, ma),
for all mq, mg € M.

Theorem 2.17. ([9], Theorem 3.1) Let (M, S) be an S-metric space. If T: M — CB(M) is a multi-valued
contraction on M, then T has a fixed point.

Definition 2.18. ([20]) Let (M, S) be an S-metric space. Define Sy : (CB(M))? — [0, +00) by
Su(Mi, M2, M3) = Hg(M1, M3) + Hg(Ma, M3),

where

Hg(My, M3) = max{hg(Mi, Ma), hg(Ma, M1)}
hs(M1, M) = sup{S(m1,my, M3) : m; € My}, and
S(my, my, Mg) = inf{S(my,m1,ms) : mgy € Ms}.
For more details see [19].

Theorem 2.19. (/19]) Sy is an S-metric on CB(M).

Definition 2.20. ([15]) Let (M, S) be an S-metric space and 7: M — M, a: M® — RT (where M3 =
M x M x M) be given mappings. We say that T is a-admissible if mj, ma,m3 € M, a(my,ma,ms) > 1
implies that a(7Tmy, Tma, Tms) > 1.

In 2012, Wardowski [30] was given a new concept by introducing Fg-family.



G. S. Saluja, Lett. Nonlinear Anal. Appl. 3 (2025), 211-231 215

Definition 2.21. ([30]) A mapping F: R™ — R is a member of the family Fg if F satisfies the following
hypotheses:
(F'1) : F is strictly increasing, i.e.,

mi <mo = F(myi) < F(meg), forall mi,me€R.
(F2) : For every positive term sequence {m, : n € N} in R*,

lim m, =0 < lim F(m,)= —oc.
n—oo n—oo

(F3) : If there exists a number v € (0, 1), then lim,_,o+ 77 F(n) = 0.
Example 2.22. Let F;: RT™ — R where i = 1,2, 3,4 be defined as:

(1) Fi(m) = In(m), (2) Fo(m) = —ﬁ, (3) F3(m) = m~+In(m) and (4) F4(m) = In(m?+m) for m > 0.
Then Fi, Fo, F3 and F; are members of the family Fg.
3. Main Results

We start with the following definition.

Definition 3.1. Let M # ) be a set and let Q: M — 2™ be a multivalued mapping. Given a function
a: M xMx M — RT. Q is called a multivalued a-admissible if for m,n € M, we have

a(m,m,n) >1 = «a(mgy, mo,ng) > 1,
where my € Q(m) and ng € Q(n).

Definition 3.2. Let (M, S) be an S-metric space and define a map Q: M — K(M). Then @ said to be a
MV F-contraction if there exists F € Fg and 7 > 0 such that

Su(Qm1,Qmi,Qma) >0 = 7+ F(Sg(Qm1, Qmi, Qmz))
< }-(Q(mlamlva))a (1)

where

Q(m1,mi,mg) = max {S(mh my,ma), S(m1,my, @my), S(ma, ma, Qma),

S(mlu m17m2)[1 + S(m27 ma, le)] }
14 S(m1,m1, ma) '

Definition 3.3. Let (M, S) be an S-metric space. Given a function a: M x Ml x M — R*. The mapping
Q: M — K(M) is said to be a MV («, F)-contraction if there exists F € Fg and 7 > 0 such that

Su(Q@my,Qmy, Qmz) >0 = 7 + F(a(my, mi, m2)S(Qm1, Qmy, Qma))
< F(Q(ma,m1,ma)), (2)

where

Q(mi1,mi,mg) = max {S(ml,mth), S(mi,my1,Qma), S(ma, ma, Qma),

S(m1,my, m)[1 + S(ma, ma, Qmy)] }
l—l—S(ml,ml,mg) ’
Lemma 3.4. Let (M, S) be a complete S-metric space and Q: M — K (M) be a MV F-contraction mapping,

then
lim ©, =0,

p—00

where ©, = S(Mpt1, Mpt1, Mps2) and p=0,1,2,....
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Proof. Let mg € M be an arbitrary element. As Qmyg is compact, it is nonempty, so we can choose m; € Qmy.
If my € @my, then m, is a fixed point of @ trivially. So, suppose m; ¢ Qmq. As @m, is closed, so we have
S(m1,m1,@Qmq) > 0. Also, we know that

S(m1,m1,Qma) < Sg(Qmo, Qmo, @my). (3)
As @my is compact, so there exists mo € (Qmy such that
S(m1,my,ma) = S(my,mi,Qmy).
Thus,
S(my, m1,ma) < Su(Qmo, Qmo, Qmy).
Likewise for mg € Qmo, we obtain
S(ma,ma,m3) < Sg(Qmy, @my, Qms),
which ultimately gives
S(mpt1, Mpy1,Mpr2) < Sa(Qmy, Qmy, Qmypi1).
Thus the condition (F'1) implies that
F(S(mpt1, mpt1,mps2)) < F(Su(Qmp, Qmyp, Qmpy1)).
By (1), we have
F(S(mpt1,mpt1,mpi2)) < F(Qmp,mp,mpi1)) — 7, (4)
where

Q(mpy,mp,mpy1) = maX{S(mpvmpamp-i-l)aS(mpampanp)7S(mp+1amp+17Qmp+1)7

S(mp» Mp, mp+1)[1 + S(mp+lv Mp+1, Qmp)] }
14 S(mp, mp, mpt1)

By using Definition 2.10, we have

Q(mpympvmp+l) < maX{S(mpampamerl)aS(mpympvmp+l)aS(mp+1amp+17mp+2)7

S(mp, mp, mp1)[1 + S(mpr1, mMpr1,mpi1)] }
1+ S(myp, mp, mpt1)

< max {S(mp, Mpy Mpt1), S(Mpy Mp, Mpi1), S(Mps1, Mp1,Mp12),

S(mp, mp, mp41) }
14 S(myp, mp, mpt1)

< max{S(mp,mp,mp+1),S(mp+1,mp+1,mp+2)}.
Suppose now
max {S(mp,mp,mp+1), S(mp+1, mp+1,mp+2)} = S(Mpg1, Mpt1, Mpt2).
Then the inequality (4) yields

T+ F(S(mp+17mp+1vmp+2)) < F(S(mp+1’mp+17mp+2)))

which is a contradiction. Therefore, we conclude that
max {S(mp,mp,mp+1), S(mp+1, mp+1,mp+2)} = S(my, my, mpi1).

Thus the inequality (4) becomes

T+ F(S(mp+1’mp+1v mp+2)) < -F(S(mp?mpvmp-&-l))' (5)
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For convenience, we assume that ©, := S(m,y1,Mp41, Mp42), where p =0,1,2,.... Clearly ©, > 0 for all
p € N. Using this in (5), we obtain
F(©,) < F(O,_1) —T.

Continuing in a same fashion, we will get

F(©,) < F(O,-1) =7 < F(Op—2) =27 < F(Op—3) = 37--- < F(Oq) — pr. (6)
Hence,
plggo]:(@p) = —00,
we have
plggo ©, =0, by (F2).
0

Theorem 3.5. Let (M, S) be a complete S-metric space such that S is a continuous mapping and Q: M —
K (M) is a multivalued (o, F)-contraction mapping. Suppose that

(1) @ is continuous;

(2) Q is an a-admissible mapping;

(3) there exists mo € M and my1 € Qmy such that a(mg, mg,m1) > 1.

Then @ has a fized point.

Proof. Let mg € M be an arbitrary point. By assumption of the theorem «(mg,mg,m1) > 1 for some
m1 € Qmyg. Similarly, for my € Qmy, we have a(mq,mi,m2) > 1 and for any sequence m, 1 € Qm,, we get

a(my,mp,mpy1) > 1 forall p e NU{0}. (7)
Now, by the contractive condition (2), we have

7+ Flalmp, mp, mp1)SH(Mp1, Mp1,Mpy2)) < F(Qmp, mp, mp11)). (8)
The inequality (8) implies that

T+ F(Su(mpt1,mpy1,mp12)) < F(Q(mp, mp, mpi1)),
and hence

F(Su(mpr1,mpr1,mpr2)) < F(QUmp,mp,mpy1)) — 7.
Now, we have

‘F(SH(Qmpa Qmpv Qmp—l—l))
F(Q(mp, mp, mpi1)) — 7.

F(S(mps1,Mpt1,mps2)))

VANVAN

By Lemma 3.4, one writes
lim ©, =0,

p—00

where ©, = S(myq1,Mpt1,Mpt2) and p=0,1,2,....
Now, by F € Fg and (F'3), there exists v € (0, 1) such that

li_)m (0,)7F(©,) =0, forall pe N. 9)
pP—00
Using (6), one writes

(0,0 (F(6,) = F(00)) < —p(6,)'7 < 0. (10)
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As 7 > 0, using (9), we have
. v
plL%Op(Gp) =0. (11)
So, there exists p; € N, such that
p(0,)Y <1, Vp=>p1.

It implies that

1
0, < —. (12)

p
Now, we will prove that {m,} is a Cauchy sequence in M. For this, let p,o € N such that p > o > p;. Using
condition S(2) of an S-MS, we have

S(mpvmpvmo) 2S(mp7mpamp+1) + S(mp+17mp+17mo)

IN A

25(mp, mp, mpp1) + 25(Mpt1, Mpy1, Mpt2)

+S(mp+2¢ mp+2, mU)

< 2[8(mp,mp,mps1) + S(Mpt1, Mpr1, Mpy2)
+o 4+ S(ma—Qa meg—2, mO’—l)] + S(mo—la me—1, ma)

o—2

= 2 Z S(mt, mg, th) + S(mafla me—1, md)
t=p
o0 o
< 2> S(my,me,men) <2 S(mir, mes1, migo)
t=p t=p
o0 oo 1
= 2) 6, <2) . (13)
t=p t=p t7
The convergence of the series Y 5>, -+ implies that lim,_,cc S(m,, m,, my) = 0, which shows that {m,} is a
tY
Cauchy sequence in M. Since M is complete, there exists m* € M such that
lim S(m,, m,, m*) = S(m*,m*,m*) = 0. (14)

p—00

We claim that m* is a fixed point of @, that is,
S(m*,m*,Qm*) = S(m*,m*, m").

Assume that S(m*, m*,Qm*) > 0. So, there exists ro € N such that S(m,, m,, @m*) > 0 for all p > ry. We
have

S(mp, mp, @m*) < Sp(Qmypy1, Qmprr, @m™).
Now, using contractive condition (2) and taking the limit as p — oo, we have
T4+ F(S(m*,m*,Qm*)) < 7+ F(a(m*,m*,m*)Sg(Qm*,Q@m*,Qm*))
< F(Q(m*,m*,m*)) < F(S(m*,m*,Qm*)),
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where
Q(m*,m*,;m*) = max {S(m*,m*,m*), S(m*,m*, Qm*), S(m*,m*, Qm*),
S(m*, m*,m*)[1 + S(m*, m*, Qm*)] }
1+ S(m*, m*, m*)

= max {0, S(m*,m*,Qm*), S(m*, m*,Qm"),0}

= S(m*,m*,Qm>).

Hence (15) yields
T+ F(S(m*,m*, Qm*)) < F(S(m*, m*, Qm*)).
Since 7 > 0, the above inequality yields a contradiction. Hence, S(m*, m*, Q@m*) = 0. Also, S(m*, m*,m*) =

0. This gives that m* € @m*. This proves that m* is a fixed point of (). The proof is completed. O

Example 3.6. Let M = {0,1,2,...}. Define S: M?® — R* by S(mq,ma,m3) = |m1 — ms| + |ma — mg| for
all my, mg, mg € M. Then (M, S) is a complete S-metric space.
We also define a multivalued map Q: M — 2M by

Q(m):{ {0,1}, if m=0,1,

{m —1,m}, otherwise.
Consider a map a: M? — R* as

2, if m,n € {0,1},

alm,m,n) =< | .
5, otherwise.

Let mg = 0, m; = 1, then @mo = {0,1} and m; = {0,1}. Giving a(mgy, mg,m1) = «(0,0,1) =2 > 1, for
some mg = 0 € Qmy, we get a(my,my,ma) = «(1,1,0) =2 > 1. Thus @ is an a-admissible map.

Define F: RT™ — R as F(m) = In(m) + m. It can be easily seen that F is a member of the family Fg.
Now, applying F on our contractive condition, we get

T+ Fla(m,m,n)Sg(Qm,Qm,Qn)) < F(Q(m,m,n)).

That is,
7+ In{a(m, m,n)Sy(Qm, Qm, @n)} + a(m, m,n)Su(Qm, @m, Qn)
< In(Q(m,m,n)) + Qm,m,n).
Hence,
T+ a(m,m,n)Sg(Q@m,Qm,Qn) — Q(m, m,n)
< ln(Q(m,m,n)) — In{a(m,m,n)Sg(Qm,Qm,Qn)}.
Therefore,
eT—i—a(m,m,n)SH(Qm,Qm,Qn)—Q(m,m,n) < Q(m7 m, n) ]
B a(m7 m, n)SH(Qma Qm, Qn)
That is,
a(m, m, n)SH(Qm) Qm> Q?’L) ea(m,m,n)SH(Qm,Qm,Qn)—Q(m,m,n) <e . (16)

Q(m,m,n)
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Now,

Su(Qm,Qm,Qn) = max{ sup S(a,a,Qn), sup S(b,b,Qm)}
ace@Qm be@n
= max{S(m,m,Qn),S(m —1,m-— 1,Qn)}
= max { inf {S(m,m,n),S(m, m,n — 1)},
inf {S(m —1,m—1,n),S(m—1,m—1,n— 1)}}

= max{2|m —nl|,2/m —n — 1|} = 2|m —n|.

Hence,

S (Qm, Qm,Qn) = 2m — n|. (17)
Also,

Q(m,m,n) > S(m,m,n) = 2/m — n|. (18)

Putting the values of (17) and (18) in the L.H.S. of (16), we have

a(m7 m, n>SH(Qm7 Qm, Qn) ea(m,m,n)SH(Qm,Qm,Qn)—Q(m,m,n)
Q(m,m,n)

2|m — n‘ 1 9lm—n|—-Q(m,m,n) :
= —_— N El El o 1
2Q(m,m,n) “ (using (17))

2m —
= 4:22:65'2’”"27”"' (using (18))
1

1
e — —\m—n| = _e 7 < _T.
5¢ e e
This implies that (16) is satisfied with 7 = |m —n|, which is a positive number for m # n. Thus all conditions

of Theorem 3.5 are true, and 0 and 1 are two fixed points of Q.

Theorem 3.7. Let (M, S) be a complete S-metric space such that S is a continuous mapping. Let Q: M —
CB(M) be a multivalued (o, F)-contraction mapping and D C (0,00) with inf D > 0. Suppose that

(1) Q is continuous;

(2) Q is an a-admissible mapping;

(3) there exists my € M and m1 € Qmq such that a(mg, mo,m1) > 1;

(4) F(inf D) = inf F(D), where F € Fg.

Then @ has a fized point.

Proof. Let mg € M be an arbitrary point. As Qm, the set of all images of m € M, is nonempty for all values
in M. We can choose m; € Qmg. If my € Qm, this means that m, is a fixed point of Q). So, we assume
that m; ¢ @my. Since Qm; is closed, we have S(mi,m1,@mq) > 0. Also, we know that

S(m17 mi, le) S SH(Qm()? Qm()a le)
By (F'1), we have
F(S(m1,m1,Qmy)) < F(Su(Qmo, @mo, @my)). (19)
Using hypothesis (4)

F(S(mi,m1,Qmq)) = helggn F(S(mi,m1,h)).
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That is,

0 F(S(ma,ma. b)) < F(Sir(Qmo. Qmo. Q). (20)

As @mq is compact, so we can find a mo € (Jmq such that

inf ]:(S(ml,ml, h)) = f(S(ml,ml,mg)).
heQmy

From (19), we obtain

F(S(m1,my,ma)) < F(Su(Qmo, Qmo, Qmy)). (21)
Likewise, for mg € @Qms, we obtain

F(S(ma,ma,m3)) < F(Su(Q@ma, @ma, Qma)),
which ultimately gives

F(S(mpt1, mpy1,mpi2)) < F(Su(Qmp, Qmy, @mpi1))- (22)

For mgy € M by assumption of the theorem, a(mg, mg, m1) > 1 for some m; € @myg. Likewise, for mo € Qm,
we have a(mi, m1, ma) > 1 and for any sequence m,41 € Qm,, we may write

a(my, my,mpyq) > 1 forall p e NU{0}. (23)
Now, using contractive condition (2), we have
T+ F(a(mp, mp, mp1)SH(Mpt1, Mpt1,Mpi2)) < F(Qmp, mp, mpi1)). (24)
The inequality (24) implies that
T+ F(Su(mpt1,mps1,mpr2)) < F(Qmp, mp, mpi1)),
and hence
F(Su(mpr1,mpr1,mpy2)) < F(Q(mp, mp, mpi1)) — 7.
Using (22) in the above inequality, we get
F(S(mps1,mpi1,mpi2)) < F(Qmp, mp, mpi1)) — T
By Lemma 3.4, one writes
lim ©, =0,
p—r00

where ©, = S(mpq1,Mpr1,Mpt2) and p=10,1,2,....
Now, by F € Fg and (F'3), there exists v € (0, 1) such that

lim (9,)7F(6,) =0, forall p € N, (25)
pP—00
Using (6), one writes

(0,)7(F(©,) = F(©0)) < ~p(6,)r < 0. (26)

Since 7 > 0, using (25), we have

lim p(©,)" =0. (27)

p—00

So, there exists p; € N, such that
p(0,)Y <1, Vp=>pi.

It implies that

0, < % (28)

p
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Next, we shall prove that {m,} is a Cauchy sequence in M. For this, following the same steps as done in
Theorem 3.5, one can easily have

. *\ * * *\
plggloS(mp,mp,m ) =S(m*,m*,m*) =0. (29)

Now, we claim that m* is a fixed point of ). Assume that S(m*,m*,Qm*) > 0, then there exists rg € N
such that S(m,,m,, @m*) > 0 for all p > ry. One can have

S(myp, mp, Qm*) < Sp(Qmpi1, @mypy1, @m).
Now, using contractive condition (2) and taking the limit as p — oo, we have
T+ F(S(m*,m*,Qm*)) < 7+ F(a(m*,m*,m*)Sg(Qm*,Qm*,Qm™))
< F(Q(m*,m*,m*)) < F(S(m*,m*,Qm*)),
(30)
where
Q(m*,m*,;m*) = max {S(m*,m*,m*), S(m*,m*, Qm*), S(m*,m*, Qm*),
S(m*,m*,m*)[1 + S(m*, m*, Qm*)] }
1+ S(m*, m*, m*)
= max{O,S(m*,m*,Qm*),S(m*,m*,Qm*),O}

= S(m*,m*,Qm*).

Hence (30) yields
T+ F(S(m”,m*, Qm™)) < F(S(m”,m*, Qm")).

Since 7 > 0, the above inequality yields a contradiction. Hence, S(m*, m*, Qm*) = 0. Also, S(m*, m*,m*) =
0. This gives that m* € @m*. This proves that m* is a fixed point of ). The proof is completed. O
+

Example 3.8. Let M = {m, = 1 — (3)”: p € N}. Define S: M® — R* by S(mq, ma, m3) = [m1 — ms|
|mg — mg| for all mi,mg, mg € M. Then (M, S) is a complete S-metric space.
We also define a multivalued map Q: M — 2M by

am={ g md =,

{mp,mp1}, if m=my,p=23,....

Consider a(my,, my, my) = 1 and Q(my, my, mq) = S(my, my, my). Define F: RT — Ras F(m) = In(m)+m.
Hence the contractive condition will take the following form

SH(Qme Qmpa qu) eSH(Qmp,Qmp,qu)fQ(mp,mp,mq) <e T (31)
Q(myp, mp, mq) N

Now, we verify the above condition for the following two cases.

Case (1) : If Sg(Qmy, Qmy, Qmq) > 0 and ¢ = 1, we have

Su(@Qmy, Qmy,, Qmy) = max{ sup S(a,a,@Qmy), sup S(b,b, Qmp)}
acEQmyp be@Qmy
= maX{S(mP>mP>Qm1)vS(mp+1amp+lan1)}
= max{2|mp—m1|,2\mp+1 —m1|} :2|mp+1 —ml\.

Hence,

Su(Qmy, Qmy, Qmy) = 2|mpp1 — mq. (32)
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Also,
Q(mp, mp,my1) = S(mp, mp,my) = 2|mp, —my|. (33)
Consequently, one writes

S (Qmp, @y, QM) s (Qmy Qmy.Qmr)—rmy.my mi)
Q(mp, mp, m1)

2|mp+1 - ml’eQ\mp+1—m1|—2|mp—m1|

2|my — my|

< e‘l_(%)p‘_ll_(%)p_l‘ < e_(%)p-‘-l —e 7

[ —_ )

for some 7 > 0, where 7 = (5

Case (2): If Sg(Qmyp, Qmy, Q@mg) > 0 with p > g > 1, we have
St (Qmyp, Qmyp, Qmg) = 2[mp1 — mgy1l,
and
Qmp, mp,mq) = S(mp, mp, mq) = 2|my — myg|.

From (31), we have
SH(Qmp’ Qmy, qu) eSH(Qmyp,Qmyp,Qmg) —Q(mp,mp,mq)
Q(myp, mp, my)

2|mp+1 — qur1|€2|mp+1_mq+1|_2|mp_mq|

2|mp_mq|

LR L e I O R R O]
= le_%‘(
2

where 7 = %‘(%)q_l - (%)p_l , which is true for all p,q € N such that p > ¢ > 1, where 7 > 0. Thus, all
the required assumptions of Theorem 3.7 are satisfied. Hence, by application of Theorem 3.7, the mapping

Q has a fixed point. Here, m; and m,, are fixed points.

4. Consequences

In this section, some known results in the literature are obtained as the consequences of the main result.
These are as follows:
(1) For all m;,mg € M and 0 < k < 1,

S(Qma, Qmy, Qma) < kS(myi, mi, ma)



G. S. Saluja, Lett. Nonlinear Anal. Appl. 3 (2025), 211-231 224

implies

S(Qmy, Qmi,Qma) < kmax{S(ml,ml,mg),S(ml,ml,le),S(mg,mg,ng),

S(my, m1,ma)[1 4+ S(ma, ma, Qmy)] }
14+ S(mq,mi,ma)

= k Q(ml, mi, TTLQ).
If S(Qmq,Q@mq,Qmsg) > 0, then
T+ ln(S(le, Qmi, ng)) < ln(Q(ml, ml,mg)),

where 7 = —Ink > 0 and @Q: M — M is a single valued mapping.
Therefore, the contraction condition in Definition 2.13 of (Sedghi et al., 2012) [26] becomes the condition
2) with F(m) = In (m), for all m > 0 and a(mq, mi, mg) = 1 for all m;, mg € M. This shows that Theorem
3.5 is a generalization of Theorem 3.1 of (Sedghi et al., 2012) for multivalued mapping.

(2) For all mi,mg € M and h € [0,1),
S(Qmy, Qmy, Qma) < h max{S(my,mi,Q@mi), S(ma, ma, Qma)}
implies
S(Qmi,Qmi,Qma) < h m&X{S(mhmhmz),S(mhm17Qm1),5(m2,m2,Qm2)7

S(mi,my1,me)[1+ S(ma, ma, @my)] }
14 S(m1, m1, mo)

= hQ(ml, my, mg).
If S(le, Qmq, sz) > 0, then
T+ In(S(Qm1, Qmy, Qma)) < In(Q(m1,m1, ma)),

where 7 = —Inh > 0 and Q: M — M is a single valued mapping.

Therefore, the contraction condition in Corollary 2.10 of (Sedghi and Dung, 2014) [27] becomes the con-
dition (2) with F(m) = In(m), for all m > 0 and a(mi,m1, ma) = 1 for all m;,my € M. This shows that
Theorem 3.5 is a generalization of Corollary 2.10 of (Sedghi and Dung, 2014). It also generalizes Corollary 2
of (Dewvi et al., 2022) [8] for multivalued mapping.

(3) For all m;,ma € M and a,b,c >0 witha+b+c< 1,
S(le,le,sz) S aS(mlvmlva) + bS(ml)ml)le) + CS(mQ)mZa sz)
that is,

S(Q@m1,Qm1,Qm2) < (a+b+c) max{S(mi,mi, mz), S(m1,m1,Qmq),
S(ma, ma, Qma)}

implies

S(thleanQ) < (a+b+c) maX{S(mlamlam2)75(m17m1)Qm1)7S(m27m27Qm2)a

S(my1, my1, ma)[1 + S(ma, ma, Qmy)] }
1+ S(my, my,mso)
= (a+b+c)Q(m1,m1, ms).
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If S(le, Qmq, ng) > 0, then
7+ In(S(Qm1, @my, Qmy)) < In(Q(my, m1,ma)),

where 7 = —In(a+b+c¢) >0 and Q: M — M is a single valued mapping.

Therefore, the contraction condition in Corollary 2.12 of (Sedghi and Dung, 2014) [27] becomes the con-
dition (2) with F(m) = In (m), for all m > 0 and a(mi,m1, ma) = 1 for all m;,my € M. This shows that
Theorem 3.5 is a generalization of Corollary 2.12 of (Sedghi and Dung, 2014) for multivalued mapping.

(4) For all my,mg € M and 0 < k < 1,
S(Qma, @ma, Qma) < k S(my1,my, mo)
implies
S$(@ma, Qmi, Qma) <k max { S(ma, ma,ma), S(ma,mi, Qma), S(ma, ma, Qma),

S(my,my1, ma)[1 + S(ma, ma, Qmq)] }
1 + S(m17m17m2)

= kQ(ml,ml,mg).
If S(Qmq,Q@mq,Qmsg) > 0, then
T+ ln(a(mh my, m2)S(Qm17 le) QmZ)) S ln(Q(mlu my, mQ))a

where 7 = —Ink > 0 and Q: M — M is a single valued mapping.

Therefore, the contraction condition in Definition 2.1 of (Javed et al., 2021) [11] becomes the condition
(2) with F'(m) = In(m), for all m > 0. This shows that Theorem 3.5 is a generalization of Theorem 2.1 of
(Javed et al., 2021) for multivalued mapping.

(5) For all m;,mg € M and ay,ag,as > 0 with a1 + az + ag < 1,
S(Qmq, Qmy, Qma) < ay S(mi, mi, ma) + az S(ma, m1, Qmy) + az S(ma, ma, Qmz)
that is,

S(Qm1,Qm1,Qma) < (a1 + a2 + a3z) max{S(my, mi,ma), S(m1, m1, Qmq),
S(mQamZanQ)}

implies

S(Qmq, Qmi, Qma) < (a1 + a2 + a3) maX{S(ml,mhmz),S(mlamhQm1)75(m2,m2,Qm2),

S(mi,mp,ma)[1 + S(ma, ma, Qmy)] }
1+ S(my,mi,m2)
= (a1 + a2 + a3) Q(m1,mi, ma).

If S(le, Qma, ng) > 0, then
T+ In(S(Qmy, Qmy, Qma)) < In(Qmi, m1,ma)),

where 7 = —In (a1 + az + ag) > 0 and Q: M — M is a single valued mapping,.

Therefore, the contraction condition in Corollary 1 of ( Thaibema et al., 2022) [29] becomes the condition
(2) with F/(m) = In(m), for all m > 0 and a(m1, m1, ma) = 1 for all my, ma € M. This shows that Theorem
3.5 is a generalization of Corollary 1 of (Thaibema et al., 2022) for multivalued mapping.
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Example 4.1. Let = [0,1]. Define the function S: M? — [0, +00) by

2 2
m1p —m3|® + |m2 —mg3
S(mi,ma,m3) = | | 5 | |

for all mq, ma, mg € M. The condition S(1) holds directly. To check condition S(2), for all n € M, we have

S(mla my, n) + S(m2>m27n) + S(m37m37n)

Im1 — n|* + [mg — n|* + [mg — nf?

Imy — m3 4+ m3 — n|* 4 |mg — m3 +msz — n|? + |mz — n|?

(lm1 — ms|* 4+ |m3 — n|?) + (|ma — m3|® + |m3 — n|?) + |m3 —n

>
_ 2 2 2
= 3\m3—n\ +(|m1 —mg‘ +‘m2—m3’ )
> |mq —mal® + [mg — mg|?
2 2
mi1 — ms|®+ |mg —m
> I 3l & [ma 3 = S(m1, ma, m3).

2

2

Hence (M, S) is an S-MS. Define MV-mapping Q: M — CB(M) by Q(m)

let a(my,m1,m2) = 1. Now, we examine the condition (3) of Theorem 3.5. Using Definition 2.18, for all

mi,mo € M, we get

Su(Q@m1,Qmy, Qmy)

where

hs(@mi,Qmg) =

sup

Hg(Qmq,Qma) + Hs(Qm1, @ma)
2 Hg(Qm1,Qmo)
2 max {hS(le, Qma), hs(Qmy, Qm2)}a

inf S(m,m,n)

meQmy NEQM2

sup
meQmi neRma

sup

inf

<|m—n|2+ m—n|2>
2

inf {|m — n|?}

meQm, NEQm2

sup inf{}m _ [0, @] )2}

me [0 ]

If m =0 € @my, then inf {0,

3

my _ mg
3 3

Consequently, hg(Qmq,@ms) = 0. Hence

Su(@Qmq,Qmi, Qma) = 2 max{0,0} = 0 < XAS(my, mi, ma) < AQ(my, mi, ma),

2
} = 0. If m = % € Qmy, then inf {0,

[O, %} for all m € M and

2}:o.

where A = 77 < 1 and F(m) = In(m) for all m > 0. Thus, the contractive condition (2) of Theorem 3.5
is fulfilled with any A\ € [0,1). Hence, all requirements of Theorem 3.5 are satisfied. Consequently, ) has a
unique fixed point which is 0 € M.

5. Applications

(A1) Here, we discuss the application of fixed point technique to the following Fredholm type integral

equation:

u(t) = /0 K(t,s,u(s))ds+ p(t), tel0,A]

(34)
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where A > 0.
Now, we establish the existence of the solution of the integral equation (34). Let M = C([0, A], R) denote
the space of all continuous real-valued functions on [0, A]. Define an S-metric S: M? — R by

S(m1,mz,m3) = |[m1—ma| + [[m2 —ms3||

= s {(Ima(t) = ms(®)] + [ma(t) — ma(t))e™ ™},

for all mq,ma, mg € M, where J = [0, A] and 7 > 0 is taken arbitrary.
It is easy to verify that (M, .S) is a complete S-metric space. Define the single valued mapping @ : M — M
by

¢
C%MO%=A*XQ&M@M& Cm e [0,A] (35)

For the derivation of existence result for the solution of the Fredholm type integral equation (34), we
prove the following theorem.

Theorem 5.1. Assume that the following assumptions hold:
(Hy) the mappings p: J — (—00,00) and K: J x J X (—o0,00) — (—00,00) are both continuous.
(Hg) there exists T € [1,+00) such that

|K"(g7 R, 'LL) - K((, R, U)| < Te " ‘u - U|7

for all ¢,k € [0,A] and u,v € R.
Then, the above integral equation (3/) has a solution.

Proof. We have to show that the operator @ satisfies all the conditions of Theorem 3.5. For this, using (35),
we have

¢
Q) = QO = | [ IC mm () = (G o)t

¢
< / |K(C757m1(’%)) _K(C7’€7m2(//‘:))|d’{
0
¢

IN

/ Te Tlmy(k) — ma(k)|dk

0

¢
= [ reTm(Q) = mag)le e
0
¢
= [ e () — ma(le
0
¢
— T i)~ ma(w)| [
0
<

= 71e "e "imy(k) — ma(k) —

= e T e TR my (k) — ma(k)|. (36)
Taking sup on both sides, we obtain

sup [Q(1m1)(C) — Q(m2)(¢)| < 77 ™ sup [my (k) — ma(r)]e” ™.
ceJ KeJ

This implies that

25up |Q(m1)(¢) — Q(ma)(Q)]e™ ™ < 2¢77 sup [ma (k) — ma(r)le”™",
ced keJ
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or equivalently,

S(Q(ma), Q(m1), Q(mz)) < €77 S(my,ma,ma),

or,

S(Q(m1),Q(m1),Q(m2)) < e 7 S(my,mi,ma) < e " Q(my, my, ma).

Thus, we obtain

S(Q(ma), Q(m1), Q(m2)) < €77 Q(my, my, ma).

After going through a natural logarithm, we can write this as

In(S(Q(m1), Q(m1),Q(my2))) <lIn(e™" Q(m1,m1,m2)),

and, after routine calculations, we get

T+ In(S(Q(m1), Q(m1), Q(ms))) < In(Q(my, mi, ms)).

Now, we see that the function F: Rt — R defined by F(u) = In(u), for each u € C(J = [0,A],R), is
in Fg, so we deduce that the operator @ satisfies all the conditions of consequence mentioned in (1) with
a(m1, m1, me) = 1. Hence by its application, the operator @ has a fixed point m* € C(J,R), that is, m* is
a solution of Fredholm type integral equation (34).

(A2) In this part, we establish the existence and uniqueness of the solution of a fractional differential
equation involving the Caputo Atangana-Baleanu via fixed point procedure

Daﬁ(t) = f(tvn(t))v tel= [Oa 1]7
n(0) = 4, (37)
where D? is the Atangana-Baleanu derivative of order A\, n: I — R, f € C(I,R) are continuous functions

such that f(0,2(0)) =0, @ € (0,1) and 0 is a constant. Let M = C([0,1],R) be the space of continuous
function defined on [0, 1].

Definition 5.2. ([3, 14, 25]) Let n € H'(a,b) with a < b and a € [0,1]. The Caputo Atangana-Baleanu
fractional derivative of 1 of order « is defined by

B(a) (t —x)*

Do) = 0 [ @E -l

] dx, (38)

where E, is the Mittage-Leffler function defined by

Eal(z) = ;) F(mi:l) (39)

and B(«) is a normalizing positive function satisfying B(0) = B(1) = 1. Then, the associative fractional
integral is given by

1-« o}
I°n(t) = —n(t —— (¢ 40
where ,I% is the left Riemann-Liouville fractional integral given as
1 t
I0(t) = 1 [ (6= 2 o) (a1)
lea /,

Proposition 5.3. ([3/) For 0 < o < 1, we have

12 D%(x) = n(z) — n(a).
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Let M = C([0, 1], R) be the set of all continuous functions defined on [0, 1]. Consider

_1—/1 K

Cl0) = Fa <0+ g . -0 s (12)
where ((t) € M.

Now, we shall investigate the existence and uniqueness solution of (42).
Define the single valued operator QQ: Ml — M by

Q) = Fr <0 + g | v W, (43)
Let S: M x M x M — RT be defined by
S(vi,ve,v3) = [lvr — 3| + [Jvg — vs]
= Stlel?ﬂvl (t) — v3(t)| + |v2(t) — vs(t)]}, (44)

for all vy, ve,v3 € M, where I = [0,1]. Then clearly (M, S) is a complete S-metric space.
Now, we will prove that fractional integral of Atangana-Baleanu type has no more than one solution in
the view of the following perspective:
1—k tr

B(r) T BT ~ "¢

where v € (0,1) and 7 > 0.
Consider,

— K K t
Q) - @vit) = (G0 + g [, ¢ -0 )

1—x K t .
(5790 B J, ¢ )
1—k K ¢ -
N ‘B(m) (C(t) —v(t) + W/o (t= )" (Cy) — v(y))dy
L=k ool — ot — v
= Bln) ¢(2) (t)] + BT () /0 (t—u)"" ¢ (y) (y)|dy
= (G + g O — v0)

)
< e TIC(E) — v ().
This implies that

2(Q¢(t) — Qu(t)] < 2e77|¢(t) —v(t)].
Taking sup,c; on both sides, we get

S(Q(€),Q(¢), Q(v)) < e77S(¢, ¢, v) < e, (),
that is,

5(Q(6), Q(C), RQ(v)) < e TR, C,v).
Taking natural logarithm of both sides, we have that

T+ In(S(Q(0), Q(0), Q1)) < In(Q(¢,C,v)).
Taking F(a) = In(a), we have

T+ F(S(Q(C): Q(Q), Q(v))) < F(2(C, ¢, v)),
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that is, @ is a («, F)-contraction for single valued mapping with «(¢,{,v) = 1. Thus all the assumptions
of consequence (1) are satisfied, which yields, fractional integral of Atangana-Baleanu type of order k has a
unique solution. O

6. Conclusion

In this article, we initiate the concept of new multi-valued contractions called («, F)-contractions and
establish some fixed point results for such contractions in the setting of complete S-metric spaces. In addition,
we illustrate our main results with concrete examples. Furthermore, some applications are also discussed for
deeper understanding of the established results. The results demonstrated in this paper extend, generalize
and enrich several conclusions in the current literature.
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