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Abstract

In this paper, we obtain some fixed point results involving α-admissibility for multi-valued F-contractions
in the framework of complete S-metric spaces. Appropriate illustrations are provided to support the main
results. Finally, an application is developed by demonstrating the existence of a solution to an integral
equation. Also, as an application, we establish the existence and uniqueness of the solutions to differential
equations in the framework of fractional derivatives involving Mittag-Leffler kernals via the fixed point
technique. Our results extend and generalize many well-known results in the existing literature.
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1. Introduction

In 1922, Banach [7] proposed the well-known Banach contraction principle (BCP), which employed a
contraction mapping in the domain of complete metric spaces. According to the BCP, in a complete metric
space (X, d), a mapping g : X → X satisfying the contraction condition on X, i.e.,

d(gζ, gη) ≤ k d(ζ, η),
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for all ζ, η ∈ X, provided k ∈ [0, 1), has a unique fixed point.
The BCP was generalized using varieties of mappings on many extensions of metric spaces. In 1969,

Nadler [16] generalized the BCP for multivalued mappings. In order to optimize a variety of approximation
theory problems, it is much more advantageous to use proper fixed point results for multivalued transforma-
tions. A new type of contraction called F -contraction was introduced by Wardowski [30]. He proved a new
fixed point result regarding F -contraction. In this way, Wardowski [30] generalized the Banach contraction
principle in a different manner from the well-known results in the literature. Altun et al. [1] focused on the
existence of the fixed point for multivalued F -contractions and proved certain fixed point theorems in the
framework of metric spaces. Many extensions and generalizations of BCP were produced and the existence
and uniqueness of fixed point were proved.

Samet et al. [24] introduced the concept of α-admissible mappings. The α-admissible mappings notion
has been used in many works, see for example [4, 5, 6, 10, 13, 21, 22].

Mlaiki in [15], introduced the notion of α-admissible mapping in the setting of S-metric spaces. Recently,
Javed et al. [11] introduced the concept of Fα-contraction which is a generalization of F -contraction and
proved a fixed point theorem in the setting of S-metric spaces.

Recently, Gairola and Khantwal [9] introduced multi-valued contraction in S-metric space and proved
some fixed point theorems for multi-valued maps on S-metric space. His results extend and generalise the
results of Nadler [16], Sedghi et al. [26] and others. In [20], Pourgholam et al. proved some common fixed
point theorems for single valued and multi-valued mappings in S-metric spaces which generalized the results
of [12, 31] (see, also [18]).

Very recently, Saluja and Nashine [23] proved some fixed point theorems for generalized F -contractions
on S-metric spaces and presented a novel fixed-circle solution as an application on S-metric spaces through
generalized F -contractions.

This paper initiates the concept of new multi-valued contractions for a mapping involving a member
of the family of functions FS and a given function α : M3 → [0,+∞) in the context of S-metric space.
We establish some fixed point results for such contractions. In addition, we illustrate our main result with
concrete examples. Some applications are also included for a wider understanding of the established result.

2. Preliminaries

Take R+ = [0,+∞) and denote by N the set of positive integers. Throughout the paper, the compact
subset of the underlying space M will be denoted by K(M).

In this part, we recall some essential concepts and consequences that will set a base for our main result.

Definition 2.1. ([26]) Let M ̸= ∅ be a set. A map S : M3 → R+ fulfilling the following axioms on M is
called an S-metric on M:

S(1) S(m1,m2,m3) = 0 if and only if m1 = m2 = m3,
S(2) S(m1,m2,m3) ≤ S(m1,m1,m4) + S(m2,m2,m4) + S(m3,m3,m4), for all m1,m2,m3,m4 ∈ M.
The pair (M, S) is said to be an S-metric space (SMS).

Example 2.2. ([20]) Let M = R+ and λ ≥ 0. Define S : M3 → R+ by

S(m1,m2,m3) =

{
0, if m1 = m2 = m3,

max{m1,m2,m3} − λ otherwise.

Then S is an S-metric space on M and is called the max S-metric.

Example 2.3. ([20]) Let M = R+. Define S : M3 → R+ as

S(m1,m2,m3) =

{
0, if m1 = m2 = m3,

m1 +m2 + 2m3 otherwise.

Then S is an S-metric space on M.
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Example 2.4. ([26]) Let M = R and S(m1,m2,m3) = |m1 −m3| + |m2 −m3|. Then S is an S-metric on
M, named the usual S-metric on M.

Definition 2.5. ([26]) Let (M, S) be an S-metric space.
(a1) If for every m ∈ A there exists k > 0 such that BS(m, k) ⊂ A, then the subset A is called an open

subset of M.
(a2) A subset A of M is said to be S-bounded if there exists k > 0 such that S(m,m, n) < k for all

m,n ∈ A.
(a3) A sequence {mr} in M converges to m0 if and only if S(mr,mr,m0) → 0 as r → ∞. That is,

for each ε > 0 there exists r0 ∈ N such that for all r ≥ r0, S(mr,mr,m0) < ε and we denote this by
limr→∞mr = m0.

(a4) A sequence {mr} in M is called Cauchy sequence if for each ε > 0, there exists r0 ∈ N such that for
all r, s ≥ r0, S(mr,mr,ms) < ε.

(a5) The S-metric space (M, S) is said to be complete if every Cauchy sequence is convergent.

Example 2.6. ([26]) Let (M, S) be as in Example 2.4. Then (M, S) is complete.

Lemma 2.7. ([26], Lemma 2.5) Let (M, S) be an S-metric space. Then, we have S(m1,m1,m2) = S(m2,m2,m1)
for all m1,m2 ∈ M.

Lemma 2.8. ([26], Lemma 2.12) Let (M, S) be an S-metric space. If mr → m and nr → n as r → ∞, then
S(mr,mr, nr) → S(m,m, n) as r → ∞.

Some useful concept regarding Hausdorff distance under the structure of S-metric spaces have been
suggested by Gairola and Khantwal [9] as follows.

Definition 2.9. ([9]) Let (M, S) be an S-metric space and CB(M) be the collection of all nonempty bounded
and closed subset of M. For, P1,P2 ∈ CB(M), the Hausdorff S-metric on CB(M) induced by S is given as
follows:

SH(M1,M1,M2) := max
{

sup
m1∈M1

S(m1,m1,M2), sup
m2∈M2

S(m2,m2,M1)
}
,

where S(m1,m1,M2) = inf{S(m1,m1,m2) : m2 ∈ M2}. Then, SH is called the Hausdorff S-distance on
CB(M) induced by S-metric.

Definition 2.10. ([28]) Let (M, S) be an S-metric space, m ∈ M and M1,M2 ⊂ M, then the distance of
the point m to the set M1 is defined as

S(m,m,M1) := inf{S(m,m, n) : n ∈ M1}.

It is clear by the definition of S(m,m,M1) that S(m,m,M1) = 0 ⇔ m ∈ M1.

Definition 2.11. ([17]) Let (M, S) be an S-metric space and M1 be a non-void subset of M. The diameter
of M1 is defined by

diam(M1) := sup{S(m,m, n) : m,n ∈ M1}.

If M1 is S-bounded, then diam(M1) < +∞.

Lemma 2.12. ([9], Lemma 3.1) Let (M, S) be an S-metric space and M1,M2 ∈ CB(M). Then for each
m1 ∈ M1, we have

S(m1,m1,M2) ≤ SH(M1,M1,M2).

Lemma 2.13. ([9], Lemma 3.2) If M1,M2 ∈ CB(M). Then for each m1 ∈ M1, then for each η > 0 there
exists m2 ∈ M2 such that

S(m1,m1,m2) ≤ SH(M1,M1,M2) + η.
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Lemma 2.14. Let (M, S) be an S-metric space. Consider two nonempty subsets M1,M2 ∈ CB(M) and
k∗ > 1. For some m1 ∈ M1, there exists m2 ∈ M2 so that

S(m1,m1,m2) ≤ k∗ SH(M1,M1,M2).

Example 2.15. Let M = R, M1 = [m1 − α,m1 + α], M2 = [m2 − β,m2 + β] and 0 < α ≤ β where
m1,m2 ∈ M. Let S : M3 → R+ be defined by S(m1,m2,m3) = |m1−m3|+ |m2−m3| for all m1,m2,m3 ∈ M.

It can be seen that M1,M2 ∈ CB(M) and so

SH(M1,M1,M2) = max
{

sup
m1∈M1

S(m1,m1,M2), sup
m2∈M2

S(m2,m2,M1)
}

= max
{
2 sup
m1∈M1

∣∣∣m1 −M2

∣∣∣, 2 sup
m2∈M2

∣∣∣m2 −M1

∣∣∣}
= max

{
2|(m2 − β)− (m1 − α)|, 2|(m2 + β)− (m1 + α)|

}
= 2max

{
|(m2 −m1)− (β − α)|, |(m2 −m1) + (β − α)|

}
≥ 2|(m2 −m1)− (β − α)|
≥ 2(|m2 −m1| − |β − α|)
= 2|m1 −m2| − 2|β − α| = S(m1,m1,m2)− 2(β − α).

So,

S(m1,m1,m2) ≤ SH(M1,M1,M2) + η, where η = 2(β − α).

Definition 2.16. ([9]) Let (M, S) be an S-metric space. A function T : M → CB(M) is said to be a
multi-valued contraction on M if there exists a constant c ∈ [0, 1) such that

SH(T m1, T m1, T m2) ≤ c S(m1,m1,m2),

for all m1,m2 ∈ M.

Theorem 2.17. ([9], Theorem3.1) Let (M, S) be an S-metric space. If T : M → CB(M) is a multi-valued
contraction on M, then T has a fixed point.

Definition 2.18. ([20]) Let (M, S) be an S-metric space. Define SH : (CB(M))3 → [0,+∞) by

SH(M1,M2,M3) = HS(M1,M3) +HS(M2,M3),

where
HS(M1,M2) = max{hS(M1,M2), hS(M2,M1)}

hS(M1,M2) = sup{S(m1,m1,M2) : m1 ∈ M1}, and

S(m1,m1,M2) = inf{S(m1,m1,m2) : m2 ∈ M2}.

For more details see [19].

Theorem 2.19. ([19]) SH is an S-metric on CB(M).

Definition 2.20. ([15]) Let (M, S) be an S-metric space and T : M → M, α : M3 → R+ (where M3 =
M × M × M) be given mappings. We say that T is α-admissible if m1,m2,m3 ∈ M, α(m1,m2,m3) ≥ 1
implies that α(T m1, T m2, T m3) ≥ 1.

In 2012, Wardowski [30] was given a new concept by introducing FS-family.
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Definition 2.21. ([30]) A mapping F : R+ → R is a member of the family FS if F satisfies the following
hypotheses:

(F1) : F is strictly increasing, i.e.,

m1 < m2 ⇒ F(m1) < F(m2), for all m1,m2 ∈ R.

(F2) : For every positive term sequence {mn : n ∈ N} in R+,

lim
n→∞

mn = 0 ⇔ lim
n→∞

F(mn) = −∞.

(F3) : If there exists a number γ ∈ (0, 1), then limη→0+ ηγF(η) = 0.

Example 2.22. Let Fi : R+ → R where i = 1, 2, 3, 4 be defined as:
(1) F1(m) = ln(m), (2) F2(m) = − 1√

m
, (3) F3(m) = m+ ln(m) and (4) F4(m) = ln(m2+m) for m > 0.

Then F1, F2, F3 and F4 are members of the family FS .

3. Main Results

We start with the following definition.

Definition 3.1. Let M ̸= ∅ be a set and let Q : M → 2M be a multivalued mapping. Given a function
α : M×M×M → R+. Q is called a multivalued α-admissible if for m,n ∈ M, we have

α(m,m, n) ≥ 1 ⇒ α(m0,m0, n0) ≥ 1,

where m0 ∈ Q(m) and n0 ∈ Q(n).

Definition 3.2. Let (M, S) be an S-metric space and define a map Q : M → K(M). Then Q said to be a
MV F-contraction if there exists F ∈ FS and τ > 0 such that

SH(Qm1, Qm1, Qm2) > 0 ⇒ τ + F(SH(Qm1, Qm1, Qm2))

≤ F(Ω(m1,m1,m2)), (1)

where

Ω(m1,m1,m2) = max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
.

Definition 3.3. Let (M, S) be an S-metric space. Given a function α : M ×M ×M → R+. The mapping
Q : M → K(M) is said to be a MV (α,F)-contraction if there exists F ∈ FS and τ > 0 such that

SH(Qm1, Qm1, Qm2) > 0 ⇒ τ + F
(
α(m1,m1,m2)SH(Qm1, Qm1, Qm2)

)
≤ F(Ω(m1,m1,m2)), (2)

where

Ω(m1,m1,m2) = max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
.

Lemma 3.4. Let (M, S) be a complete S-metric space and Q : M → K(M) be a MV F-contraction mapping,
then

lim
ρ→∞

Θρ = 0,

where Θρ = S(mρ+1,mρ+1,mρ+2) and ρ = 0, 1, 2, . . . .
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Proof. Let m0 ∈ M be an arbitrary element. As Qm0 is compact, it is nonempty, so we can choose m1 ∈ Qm0.
If m1 ∈ Qm1, then m1 is a fixed point of Q trivially. So, suppose m1 /∈ Qm1. As Qm1 is closed, so we have
S(m1,m1, Qm1) > 0. Also, we know that

S(m1,m1, Qm1) ≤ SH(Qm0, Qm0, Qm1). (3)

As Qm1 is compact, so there exists m2 ∈ Qm1 such that

S(m1,m1,m2) = S(m1,m1, Qm1).

Thus,

S(m1,m1,m2) ≤ SH(Qm0, Qm0, Qm1).

Likewise for m3 ∈ Qm2, we obtain

S(m2,m2,m3) ≤ SH(Qm1, Qm1, Qm2),

which ultimately gives

S(mρ+1,mρ+1,mρ+2) ≤ SH(Qmρ, Qmρ, Qmρ+1).

Thus the condition (F1) implies that

F(S(mρ+1,mρ+1,mρ+2)) ≤ F(SH(Qmρ, Qmρ, Qmρ+1)).

By (1), we have

F(S(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1))− τ, (4)

where

Ω(mρ,mρ,mρ+1) = max
{
S(mρ,mρ,mρ+1), S(mρ,mρ, Qmρ), S(mρ+1,mρ+1, Qmρ+1),

S(mρ,mρ,mρ+1)[1 + S(mρ+1,mρ+1, Qmρ)]

1 + S(mρ,mρ,mρ+1)

}
.

By using Definition 2.10, we have

Ω(mρ,mρ,mρ+1) ≤ max
{
S(mρ,mρ,mρ+1), S(mρ,mρ,mρ+1), S(mρ+1,mρ+1,mρ+2),

S(mρ,mρ,mρ+1)[1 + S(mρ+1,mρ+1,mρ+1)]

1 + S(mρ,mρ,mρ+1)

}
≤ max

{
S(mρ,mρ,mρ+1), S(mρ,mρ,mρ+1), S(mρ+1,mρ+1,mρ+2),

S(mρ,mρ,mρ+1)

1 + S(mρ,mρ,mρ+1)

}
≤ max

{
S(mρ,mρ,mρ+1), S(mρ+1,mρ+1,mρ+2)

}
.

Suppose now
max

{
S(mρ,mρ,mρ+1), S(mρ+1,mρ+1,mρ+2)

}
= S(mρ+1,mρ+1,mρ+2).

Then the inequality (4) yields

τ + F(S(mρ+1,mρ+1,mρ+2)) ≤ F(S(mρ+1,mρ+1,mρ+2)),

which is a contradiction. Therefore, we conclude that

max
{
S(mρ,mρ,mρ+1), S(mρ+1,mρ+1,mρ+2)

}
= S(mρ,mρ,mρ+1).

Thus the inequality (4) becomes

τ + F(S(mρ+1,mρ+1,mρ+2)) ≤ F(S(mρ,mρ,mρ+1)). (5)
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For convenience, we assume that Θρ := S(mρ+1,mρ+1,mρ+2), where ρ = 0, 1, 2, . . . . Clearly Θρ > 0 for all
ρ ∈ N. Using this in (5), we obtain

F(Θρ) ≤ F(Θρ−1)− τ.

Continuing in a same fashion, we will get

F(Θρ) ≤ F(Θρ−1)− τ ≤ F(Θρ−2)− 2τ ≤ F(Θρ−3)− 3τ · · · ≤ F(Θ0)− ρτ. (6)

Hence,

lim
ρ→∞

F(Θρ) = −∞,

we have

lim
ρ→∞

Θρ = 0, by (F2).

Theorem 3.5. Let (M, S) be a complete S-metric space such that S is a continuous mapping and Q : M →
K(M) is a multivalued (α,F)-contraction mapping. Suppose that

(1) Q is continuous;
(2) Q is an α-admissible mapping;
(3) there exists m0 ∈ M and m1 ∈ Qm0 such that α(m0,m0,m1) ≥ 1.
Then Q has a fixed point.

Proof. Let m0 ∈ M be an arbitrary point. By assumption of the theorem α(m0,m0,m1) ≥ 1 for some
m1 ∈ Qm0. Similarly, for m2 ∈ Qm1, we have α(m1,m1,m2) ≥ 1 and for any sequence mρ+1 ∈ Qmρ, we get

α(mρ,mρ,mρ+1) ≥ 1 for all ρ ∈ N ∪ {0}. (7)

Now, by the contractive condition (2), we have

τ + F(α(mρ,mρ,mρ+1)SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1)). (8)

The inequality (8) implies that

τ + F(SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1)),

and hence

F(SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1))− τ.

Now, we have

F(S(mρ+1,mρ+1,mρ+2))) ≤ F(SH(Qmρ, Qmρ, Qmρ+1))

≤ F(Ω(mρ,mρ,mρ+1))− τ.

By Lemma 3.4, one writes
lim
ρ→∞

Θρ = 0,

where Θρ = S(mρ+1,mρ+1,mρ+2) and ρ = 0, 1, 2, . . . .
Now, by F ∈ FS and (F3), there exists γ ∈ (0, 1) such that

lim
ρ→∞

(Θρ)
γF(Θρ) = 0, for all ρ ∈ N. (9)

Using (6), one writes

(Θρ)
γ
(
F(Θρ)−F(Θ0)

)
≤ −ρ(Θρ)

γτ ≤ 0. (10)
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As τ > 0, using (9), we have

lim
ρ→∞

ρ(Θρ)
γ = 0. (11)

So, there exists ρ1 ∈ N, such that

ρ(Θρ)
γ ≤ 1, ∀ ρ ≥ ρ1.

It implies that

Θρ ≤ 1

ρ
1
γ

. (12)

Now, we will prove that {mρ} is a Cauchy sequence in M. For this, let ρ, σ ∈ N such that ρ > σ ≥ ρ1. Using
condition S(2) of an S-MS, we have

S(mρ,mρ,mσ) ≤ 2S(mρ,mρ,mρ+1) + S(mρ+1,mρ+1,mσ)

≤ 2S(mρ,mρ,mρ+1) + 2S(mρ+1,mρ+1,mρ+2)

+S(mρ+2,mρ+2,mσ)

...
≤ 2[S(mρ,mρ,mρ+1) + S(mρ+1,mρ+1,mρ+2)

+ · · ·+ S(mσ−2,mσ−2,mσ−1)] + S(mσ−1,mσ−1,mσ)

= 2
σ−2∑
t=ρ

S(mt,mt,mt+1) + S(mσ−1,mσ−1,mσ)

≤ 2
∞∑
t=ρ

S(mt,mt,mt+1) ≤ 2
∞∑
t=ρ

S(mt+1,mt+1,mt+2)

= 2
∞∑
t=ρ

Θt ≤ 2
∞∑
t=ρ

1

t
1
γ

. (13)

The convergence of the series
∑∞

t=1
1

t
1
γ

implies that limρ→∞ S(mρ,mρ,mσ) = 0, which shows that {mρ} is a

Cauchy sequence in M. Since M is complete, there exists m⋆ ∈ M such that

lim
ρ→∞

S(mρ,mρ,m
⋆) = S(m⋆,m⋆,m⋆) = 0. (14)

We claim that m⋆ is a fixed point of Q, that is,

S(m⋆,m⋆, Qm⋆) = S(m⋆,m⋆,m⋆).

Assume that S(m⋆,m⋆, Qm⋆) > 0. So, there exists r0 ∈ N such that S(mρ,mρ, Qm⋆) > 0 for all ρ > r0. We
have

S(mρ,mρ, Qm⋆) ≤ SH(Qmρ+1, Qmρ+1, Qm⋆).

Now, using contractive condition (2) and taking the limit as ρ → ∞, we have

τ + F(S(m⋆,m⋆, Qm⋆)) ≤ τ + F(α(m⋆,m⋆,m⋆)SH(Qm⋆, Qm⋆, Qm⋆))

≤ F(Ω(m⋆,m⋆,m⋆)) ≤ F(S(m⋆,m⋆, Qm⋆)),

(15)
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where

Ω(m⋆,m⋆,m⋆) = max
{
S(m⋆,m⋆,m⋆), S(m⋆,m⋆, Qm⋆), S(m⋆,m⋆, Qm⋆),

S(m⋆,m⋆,m⋆)[1 + S(m⋆,m⋆, Qm⋆)]

1 + S(m⋆,m⋆,m⋆)

}
= max

{
0, S(m⋆,m⋆, Qm⋆), S(m⋆,m⋆, Qm⋆), 0

}
= S(m⋆,m⋆, Qm⋆).

Hence (15) yields

τ + F(S(m⋆,m⋆, Qm⋆)) ≤ F(S(m⋆,m⋆, Qm⋆)).

Since τ > 0, the above inequality yields a contradiction. Hence, S(m⋆,m⋆, Qm⋆) = 0. Also, S(m⋆,m⋆,m⋆) =
0. This gives that m⋆ ∈ Qm⋆. This proves that m⋆ is a fixed point of Q. The proof is completed.

Example 3.6. Let M = {0, 1, 2, . . . }. Define S : M3 → R+ by S(m1,m2,m3) = |m1 −m3|+ |m2 −m3| for
all m1,m2,m3 ∈ M. Then (M, S) is a complete S-metric space.

We also define a multivalued map Q : M → 2M by

Q(m) =

{
{0, 1}, if m = 0, 1,

{m− 1,m}, otherwise.

Consider a map α : M3 → R+ as

α(m,m, n) =

{
2, if m,n ∈ {0, 1},
1
2 , otherwise.

Let m0 = 0, m1 = 1, then Qm0 = {0, 1} and m1 = {0, 1}. Giving α(m0,m0,m1) = α(0, 0, 1) = 2 > 1, for
some m2 = 0 ∈ Qm1, we get α(m1,m1,m2) = α(1, 1, 0) = 2 > 1. Thus Q is an α-admissible map.

Define F : R+ → R as F(m) = ln(m) +m. It can be easily seen that F is a member of the family FS .
Now, applying F on our contractive condition, we get

τ + F(α(m,m, n)SH(Qm,Qm,Qn)) ≤ F(Ω(m,m, n)).

That is,
τ + ln{α(m,m, n)SH(Qm,Qm,Qn)}+ α(m,m, n)SH(Qm,Qm,Qn)

≤ ln
(
Ω(m,m, n)

)
+Ω(m,m, n).

Hence,
τ + α(m,m, n)SH(Qm,Qm,Qn)− Ω(m,m, n)

≤ ln
(
Ω(m,m, n)

)
− ln{α(m,m, n)SH(Qm,Qm,Qn)}.

Therefore,

eτ+α(m,m,n)SH(Qm,Qm,Qn)−Ω(m,m,n) ≤ Ω(m,m, n)

α(m,m, n)SH(Qm,Qm,Qn)
.

That is,

α(m,m, n)SH(Qm,Qm,Qn)

Ω(m,m, n)
eα(m,m,n)SH(Qm,Qm,Qn)−Ω(m,m,n) ≤ e−τ . (16)



G. S. Saluja, Lett. Nonlinear Anal. Appl. 3 (2025), 211-231 220

Now,

SH(Qm,Qm,Qn) = max
{

sup
a∈Qm

S(a, a,Qn), sup
b∈Qn

S(b, b,Qm)
}

= max
{
S(m,m,Qn), S(m− 1,m− 1, Qn)

}
= max

{
inf

{
S(m,m, n), S(m,m, n− 1)

}
,

inf
{
S(m− 1,m− 1, n), S(m− 1,m− 1, n− 1)

}}
= max{2|m− n|, 2|m− n− 1|} = 2|m− n|.

Hence,

SH(Qm,Qm,Qn) = 2|m− n|. (17)

Also,

Ω(m,m, n) ≥ S(m,m, n) = 2|m− n|. (18)

Putting the values of (17) and (18) in the L.H.S. of (16), we have

α(m,m, n)SH(Qm,Qm,Qn)

Ω(m,m, n)
eα(m,m,n)SH(Qm,Qm,Qn)−Ω(m,m,n)

=
2|m− n|

2Ω(m,m, n)
e

1
2
.2|m−n|−Ω(m,m,n) (using (17))

=
2|m− n|
4|m− n|

e
1
2
.2|m−n|−2|m−n| (using (18))

=
1

2
e−|m−n| =

1

2
e−τ < e−τ .

This implies that (16) is satisfied with τ = |m−n|, which is a positive number for m ̸= n. Thus all conditions
of Theorem 3.5 are true, and 0 and 1 are two fixed points of Q.

Theorem 3.7. Let (M, S) be a complete S-metric space such that S is a continuous mapping. Let Q : M →
CB(M) be a multivalued (α,F)-contraction mapping and D ⊂ (0,∞) with inf D > 0. Suppose that

(1) Q is continuous;
(2) Q is an α-admissible mapping;
(3) there exists m0 ∈ M and m1 ∈ Qm0 such that α(m0,m0,m1) ≥ 1;
(4) F(infD) = inf F(D), where F ∈ FS.
Then Q has a fixed point.

Proof. Let m0 ∈ M be an arbitrary point. As Qm, the set of all images of m ∈ M, is nonempty for all values
in M. We can choose m1 ∈ Qm0. If m1 ∈ Qm1, this means that m1 is a fixed point of Q. So, we assume
that m1 /∈ Qm1. Since Qm1 is closed, we have S(m1,m1, Qm1) > 0. Also, we know that

S(m1,m1, Qm1) ≤ SH(Qm0, Qm0, Qm1).

By (F1), we have

F(S(m1,m1, Qm1)) ≤ F(SH(Qm0, Qm0, Qm1)). (19)

Using hypothesis (4)

F(S(m1,m1, Qm1)) = inf
h∈Qm1

F(S(m1,m1, h)).
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That is,

inf
h∈Qm1

F(S(m1,m1, h)) ≤ F(SH(Qm0, Qm0, Qm1)). (20)

As Qm1 is compact, so we can find a m2 ∈ Qm1 such that

inf
h∈Qm1

F(S(m1,m1, h)) = F(S(m1,m1,m2)).

From (19), we obtain

F(S(m1,m1,m2)) ≤ F(SH(Qm0, Qm0, Qm1)). (21)

Likewise, for m3 ∈ Qm2, we obtain

F(S(m2,m2,m3)) ≤ F(SH(Qm1, Qm1, Qm2)),

which ultimately gives

F(S(mρ+1,mρ+1,mρ+2)) ≤ F(SH(Qmρ, Qmρ, Qmρ+1)). (22)

For m0 ∈ M by assumption of the theorem, α(m0,m0,m1) ≥ 1 for some m1 ∈ Qm0. Likewise, for m2 ∈ Qm1,
we have α(m1,m1,m2) ≥ 1 and for any sequence mρ+1 ∈ Qmρ, we may write

α(mρ,mρ,mρ+1) ≥ 1 for all ρ ∈ N ∪ {0}. (23)

Now, using contractive condition (2), we have

τ + F(α(mρ,mρ,mρ+1)SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1)). (24)

The inequality (24) implies that

τ + F(SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1)),

and hence

F(SH(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1))− τ.

Using (22) in the above inequality, we get

F(S(mρ+1,mρ+1,mρ+2)) ≤ F(Ω(mρ,mρ,mρ+1))− τ.

By Lemma 3.4, one writes
lim
ρ→∞

Θρ = 0,

where Θρ = S(mρ+1,mρ+1,mρ+2) and ρ = 0, 1, 2, . . . .
Now, by F ∈ FS and (F3), there exists γ ∈ (0, 1) such that

lim
ρ→∞

(Θρ)
γF(Θρ) = 0, for all ρ ∈ N. (25)

Using (6), one writes

(Θρ)
γ
(
F(Θρ)−F(Θ0)

)
≤ −ρ(Θρ)

γτ ≤ 0. (26)

Since τ > 0, using (25), we have

lim
ρ→∞

ρ(Θρ)
γ = 0. (27)

So, there exists ρ1 ∈ N, such that

ρ(Θρ)
γ ≤ 1, ∀ ρ ≥ ρ1.

It implies that

Θρ ≤ 1

ρ
1
γ

. (28)



G. S. Saluja, Lett. Nonlinear Anal. Appl. 3 (2025), 211-231 222

Next, we shall prove that {mρ} is a Cauchy sequence in M. For this, following the same steps as done in
Theorem 3.5, one can easily have

lim
ρ→∞

S(mρ,mρ,m
⋆) = S(m⋆,m⋆,m⋆) = 0. (29)

Now, we claim that m⋆ is a fixed point of Q. Assume that S(m⋆,m⋆, Qm⋆) > 0, then there exists r0 ∈ N
such that S(mρ,mρ, Qm⋆) > 0 for all ρ > r0. One can have

S(mρ,mρ, Qm⋆) ≤ SH(Qmρ+1, Qmρ+1, Qm⋆).

Now, using contractive condition (2) and taking the limit as ρ → ∞, we have

τ + F(S(m⋆,m⋆, Qm⋆)) ≤ τ + F(α(m⋆,m⋆,m⋆)SH(Qm⋆, Qm⋆, Qm⋆))

≤ F(Ω(m⋆,m⋆,m⋆)) ≤ F(S(m⋆,m⋆, Qm⋆)),

(30)

where

Ω(m⋆,m⋆,m⋆) = max
{
S(m⋆,m⋆,m⋆), S(m⋆,m⋆, Qm⋆), S(m⋆,m⋆, Qm⋆),

S(m⋆,m⋆,m⋆)[1 + S(m⋆,m⋆, Qm⋆)]

1 + S(m⋆,m⋆,m⋆)

}
= max

{
0, S(m⋆,m⋆, Qm⋆), S(m⋆,m⋆, Qm⋆), 0

}
= S(m⋆,m⋆, Qm⋆).

Hence (30) yields

τ + F(S(m⋆,m⋆, Qm⋆)) ≤ F(S(m⋆,m⋆, Qm⋆)).

Since τ > 0, the above inequality yields a contradiction. Hence, S(m⋆,m⋆, Qm⋆) = 0. Also, S(m⋆,m⋆,m⋆) =
0. This gives that m⋆ ∈ Qm⋆. This proves that m⋆ is a fixed point of Q. The proof is completed.

Example 3.8. Let M = {mρ = 1 −
(
1
2

)ρ
: ρ ∈ N}. Define S : M3 → R+ by S(m1,m2,m3) = |m1 −m3| +

|m2 −m3| for all m1,m2,m3 ∈ M. Then (M, S) is a complete S-metric space.
We also define a multivalued map Q : M → 2M by

Q(m) =

{
{m1}, if m = m1,

{mp,mp+1}, if m = mp, p = 2, 3, . . . .

Consider α(mp,mp,mq) = 1 and Ω(mp,mp,mq) = S(mp,mp,mq). Define F : R+ → R as F(m) = ln(m)+m.
Hence the contractive condition will take the following form

SH(Qmp, Qmp, Qmq)

Ω(mp,mp,mq)
eSH(Qmp,Qmp,Qmq)−Ω(mp,mp,mq) ≤ e−τ . (31)

Now, we verify the above condition for the following two cases.
Case (1) : If SH(Qmp, Qmp, Qm1) > 0 and q = 1, we have

SH(Qmp, Qmp, Qm1) = max
{

sup
a∈Qmp

S(a, a,Qm1), sup
b∈Qm1

S(b, b,Qmp)
}

= max
{
S(mp,mp, Qm1), S(mp+1,mp+1, Qm1)

}
= max{2|mp −m1|, 2|mp+1 −m1|} = 2|mp+1 −m1|.

Hence,

SH(Qmp, Qmp, Qm1) = 2|mp+1 −m1|. (32)
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Also,

Ω(mp,mp,m1) = S(mp,mp,m1) = 2|mp −m1|. (33)

Consequently, one writes

SH(Qmp, Qmp, Qm1)

Ω(mp,mp,m1)
eSH(Qmp,Qmp,Qm1)−Ω(mp,mp,m1)

≤ 2|mp+1 −m1|
2|mp −m1|

e2|mp+1−m1|−2|mp−m1|

=

∣∣1− (
1
2

)p+1 −
(
1
2

)∣∣∣∣1− (12
)p − (

1
2

)∣∣ × e2
∣∣1−( 1

2

)p+1
−
(

1
2

)∣∣−2
∣∣1−( 1

2

)p
−
(

1
2

)∣∣
=

∣∣(1
2

)
−
(
1
2

)p+1∣∣∣∣(1
2

)
− (12

)p∣∣ × e2
∣∣( 1

2

)
−
(

1
2

)p+1∣∣−2
∣∣( 1

2

)
−( 1

2

)p∣∣
≤ e

∣∣1−( 1
2

)p∣∣−∣∣1−( 1
2

)p−1∣∣
≤ e−

(
1
2

)p+1

= e−τ ,

for some τ > 0, where τ =
(
1
2

)p+1.

Case (2): If SH(Qmp, Qmp, Qmq) > 0 with p ≥ q > 1, we have

SH(Qmp, Qmp, Qmq) = 2|mp+1 −mq+1|,

and

Ω(mp,mp,mq) = S(mp,mp,mq) = 2|mp −mq|.

From (31), we have
SH(Qmp, Qmp, Qmq)

Ω(mp,mp,mq)
eSH(Qmp,Qmp,Qmq)−Ω(mp,mp,mq)

=
2|mp+1 −mq+1|
2|mp −mq|

e2|mp+1−mq+1|−2|mp−mq |

=

∣∣1− (
1
2

)p+1 −
[
1−

(
1
2

)q+1]∣∣∣∣1− (
1
2

)p − [
1−

(
1
2

)q]∣∣ × e2
∣∣1−( 1

2

)p+1
−
[
1−
(

1
2

)q+1]∣∣−2
∣∣1−( 1

2

)p
−
[
1−
(

1
2

)q]∣∣
=

1

2
e−

1
2

∣∣( 1
2

)q−1
−
(

1
2

)p−1∣∣
< e−

1
2

∣∣( 1
2

)q−1
−
(

1
2

)p−1∣∣
= e−τ ,

where τ = 1
2

∣∣(1
2

)q−1 −
(
1
2

)p−1∣∣, which is true for all p, q ∈ N such that p ≥ q > 1, where τ > 0. Thus, all
the required assumptions of Theorem 3.7 are satisfied. Hence, by application of Theorem 3.7, the mapping
Q has a fixed point. Here, m1 and mp are fixed points.

4. Consequences

In this section, some known results in the literature are obtained as the consequences of the main result.
These are as follows:

(1) For all m1,m2 ∈ M and 0 ≤ k < 1,

S(Qm1, Qm1, Qm2) ≤ k S(m1,m1,m2)
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implies

S(Qm1, Qm1, Qm2) ≤ k max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
= kΩ(m1,m1,m2).

If S(Qm1, Qm1, Qm2) > 0, then

τ + ln
(
S(Qm1, Qm1, Qm2)

)
≤ ln

(
Ω(m1,m1,m2)

)
,

where τ = −ln k > 0 and Q : M → M is a single valued mapping.
Therefore, the contraction condition in Definition 2.13 of (Sedghi et al., 2012) [26] becomes the condition

(2) with F (m) = ln (m), for all m > 0 and α(m1,m1,m2) = 1 for all m1,m2 ∈ M. This shows that Theorem
3.5 is a generalization of Theorem 3.1 of (Sedghi et al., 2012) for multivalued mapping.

(2) For all m1,m2 ∈ M and h ∈ [0, 1),

S(Qm1, Qm1, Qm2) ≤ h max{S(m1,m1, Qm1), S(m2,m2, Qm2)}

implies

S(Qm1, Qm1, Qm2) ≤ h max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
= hΩ(m1,m1,m2).

If S(Qm1, Qm1, Qm2) > 0, then

τ + ln
(
S(Qm1, Qm1, Qm2)

)
≤ ln

(
Ω(m1,m1,m2)

)
,

where τ = −ln h > 0 and Q : M → M is a single valued mapping.
Therefore, the contraction condition in Corollary 2.10 of (Sedghi and Dung, 2014) [27] becomes the con-

dition (2) with F (m) = ln (m), for all m > 0 and α(m1,m1,m2) = 1 for all m1,m2 ∈ M. This shows that
Theorem 3.5 is a generalization of Corollary 2.10 of (Sedghi and Dung, 2014). It also generalizes Corollary 2
of (Devi et al., 2022) [8] for multivalued mapping.

(3) For all m1,m2 ∈ M and a, b, c ≥ 0 with a+ b+ c < 1,

S(Qm1, Qm1, Qm2) ≤ aS(m1,m1,m2) + b S(m1,m1, Qm1) + c S(m2,m2, Qm2)

that is,

S(Qm1, Qm1, Qm2) ≤ (a+ b+ c) max{S(m1,m1,m2), S(m1,m1, Qm1),

S(m2,m2, Qm2)}

implies

S(Qm1, Qm1, Qm2) ≤ (a+ b+ c) max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
= (a+ b+ c) Ω(m1,m1,m2).
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If S(Qm1, Qm1, Qm2) > 0, then

τ + ln
(
S(Qm1, Qm1, Qm2)

)
≤ ln

(
Ω(m1,m1,m2)

)
,

where τ = −ln (a+ b+ c) > 0 and Q : M → M is a single valued mapping.
Therefore, the contraction condition in Corollary 2.12 of (Sedghi and Dung, 2014) [27] becomes the con-

dition (2) with F (m) = ln (m), for all m > 0 and α(m1,m1,m2) = 1 for all m1,m2 ∈ M. This shows that
Theorem 3.5 is a generalization of Corollary 2.12 of (Sedghi and Dung, 2014) for multivalued mapping.

(4) For all m1,m2 ∈ M and 0 ≤ k < 1,

S(Qm1, Qm1, Qm2) ≤ k S(m1,m1,m2)

implies

S(Qm1, Qm1, Qm2) ≤ k max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
= kΩ(m1,m1,m2).

If S(Qm1, Qm1, Qm2) > 0, then

τ + ln
(
α(m1,m1,m2)S(Qm1, Qm1, Qm2)

)
≤ ln

(
Ω(m1,m1,m2)

)
,

where τ = −ln k > 0 and Q : M → M is a single valued mapping.
Therefore, the contraction condition in Definition 2.1 of (Javed et al., 2021) [11] becomes the condition

(2) with F (m) = ln (m), for all m > 0. This shows that Theorem 3.5 is a generalization of Theorem 2.1 of
(Javed et al., 2021) for multivalued mapping.

(5) For all m1,m2 ∈ M and a1, a2, a3 ≥ 0 with a1 + a2 + a3 < 1,

S(Qm1, Qm1, Qm2) ≤ a1 S(m1,m1,m2) + a2 S(m1,m1, Qm1) + a3 S(m2,m2, Qm2)

that is,

S(Qm1, Qm1, Qm2) ≤ (a1 + a2 + a3) max{S(m1,m1,m2), S(m1,m1, Qm1),

S(m2,m2, Qm2)}

implies

S(Qm1, Qm1, Qm2) ≤ (a1 + a2 + a3) max
{
S(m1,m1,m2), S(m1,m1, Qm1), S(m2,m2, Qm2),

S(m1,m1,m2)[1 + S(m2,m2, Qm1)]

1 + S(m1,m1,m2)

}
= (a1 + a2 + a3) Ω(m1,m1,m2).

If S(Qm1, Qm1, Qm2) > 0, then

τ + ln
(
S(Qm1, Qm1, Qm2)

)
≤ ln

(
Ω(m1,m1,m2)

)
,

where τ = −ln (a1 + a2 + a3) > 0 and Q : M → M is a single valued mapping.
Therefore, the contraction condition in Corollary 1 of (Thaibema et al., 2022) [29] becomes the condition

(2) with F (m) = ln (m), for all m > 0 and α(m1,m1,m2) = 1 for all m1,m2 ∈ M. This shows that Theorem
3.5 is a generalization of Corollary 1 of (Thaibema et al., 2022) for multivalued mapping.
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Example 4.1. Let Ω = [0, 1]. Define the function S : M3 → [0,+∞) by

S(m1,m2,m3) =
|m1 −m3|2 + |m2 −m3|2

2

for all m1,m2,m3 ∈ M. The condition S(1) holds directly. To check condition S(2), for all n ∈ M, we have

S(m1,m1, n) + S(m2,m2, n) + S(m3,m3, n)

= |m1 − n|2 + |m2 − n|2 + |m3 − n|2

= |m1 −m3 +m3 − n|2 + |m2 −m3 +m3 − n|2 + |m3 − n|2

≥ (|m1 −m3|2 + |m3 − n|2) + (|m2 −m3|2 + |m3 − n|2) + |m3 − n|2

= 3|m3 − n|2 + (|m1 −m3|2 + |m2 −m3|2)
≥ |m1 −m3|2 + |m2 −m3|2

≥ |m1 −m3|2 + |m2 −m3|2

2
= S(m1,m2,m3).

Hence (M, S) is an S-MS. Define MV-mapping Q : M → CB(M) by Q(m) =
[
0, m3

]
for all m ∈ M and

let α(m1,m1,m2) = 1. Now, we examine the condition (3) of Theorem 3.5. Using Definition 2.18, for all
m1,m2 ∈ M, we get

SH(Qm1, Qm1, Qm2) = HS(Qm1, Qm2) +HS(Qm1, Qm2)

= 2HS(Qm1, Qm2)

= 2max
{
hS(Qm1, Qm2), hS(Qm1, Qm2)

}
,

where

hS(Qm1, Qm2) = sup
m∈Qm1

inf
n∈Qm2

S(m,m, n)

= sup
m∈Qm1

inf
n∈Qm2

( |m− n|2 + |m− n|2

2

)
= sup

m∈Qm1

inf
n∈Qm2

{|m− n|2}

= sup

m∈
[
0,

m1
3

] inf {∣∣∣m−
[
0,

m2

3

]∣∣∣2}.
If m = 0 ∈ Qm1, then inf

{
0,
∣∣∣m1

3 − m2
3

∣∣∣2} = 0. If m = m1
3 ∈ Qm1, then inf

{
0,
∣∣∣m1

3 − m2
3

∣∣∣2} = 0.
Consequently, hS(Qm1, Qm2) = 0. Hence

SH(Qm1, Qm1, Qm2) = 2 max{0, 0} = 0 ≤ λS(m1,m1,m2) ≤ λΩ(m1,m1,m2),

where λ = e−τ < 1 and F(m) = ln (m) for all m > 0. Thus, the contractive condition (2) of Theorem 3.5
is fulfilled with any λ ∈ [0, 1). Hence, all requirements of Theorem 3.5 are satisfied. Consequently, Q has a
unique fixed point which is 0 ∈ M.

5. Applications

(A1) Here, we discuss the application of fixed point technique to the following Fredholm type integral
equation:

u(t) =

∫ t

0
K(t, s, u(s))ds+ µ(t), t ∈ [0,Λ], (34)
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where Λ > 0.
Now, we establish the existence of the solution of the integral equation (34). Let M = C([0,Λ],R) denote

the space of all continuous real-valued functions on [0,Λ]. Define an S-metric S : M3 → R by

S(m1,m2,m3) = ∥m1 −m3∥+ ∥m2 −m3∥
= sup

t∈J

{
(|m1(t)−m3(t)|+ |m2(t)−m3(t)|)e−τt

}
,

for all m1,m2,m3 ∈ M, where J = [0,Λ] and τ > 0 is taken arbitrary.
It is easy to verify that (M, S) is a complete S-metric space. Define the single valued mapping Q : M → M

by

Q(u(ζ)) =

∫ ζ

0
K(ζ, κ, u(κ))dκ, ζ, κ ∈ [0,Λ]. (35)

For the derivation of existence result for the solution of the Fredholm type integral equation (34), we
prove the following theorem.

Theorem 5.1. Assume that the following assumptions hold:
(H1) the mappings µ : J → (−∞,∞) and K : J × J × (−∞,∞) → (−∞,∞) are both continuous.
(H2) there exists τ ∈ [1,+∞) such that

|K(ζ, κ, u)−K(ζ, κ, v)| ≤ τ e−τ |u− v|,

for all ζ, κ ∈ [0,Λ] and u, v ∈ R.
Then, the above integral equation (34) has a solution.

Proof. We have to show that the operator Q satisfies all the conditions of Theorem 3.5. For this, using (35),
we have

|Q(m1)(ζ)−Q(m2)(ζ)| =
∣∣∣ ∫ ζ

0
[K(ζ, κ,m1(κ))−K(ζ, κ,m2(κ))]dκ

∣∣∣
≤

∫ ζ

0

∣∣K(ζ, κ,m1(κ))−K(ζ, κ,m2(κ))
∣∣dκ

≤
∫ ζ

0
τ e−τ |m1(κ)−m2(κ)|dκ

=

∫ ζ

0
τ e−τ |m1(ζ)−m2(ζ)|e−τκeτκdκ

=

∫ ζ

0
eτκτ e−τ |m1(κ)−m2(κ)|e−τκdκ

= τ e−τ e−τκ|m1(κ)−m2(κ)|
∫ ζ

0
eτκdκ

= τ e−τ e−τκ|m1(κ)−m2(κ)|
eτζ

τ

= e−τ eτζ e−τκ|m1(κ)−m2(κ)|. (36)

Taking sup on both sides, we obtain

sup
ζ∈J

|Q(m1)(ζ)−Q(m2)(ζ)| ≤ e−τ eτζ sup
κ∈J

|m1(κ)−m2(κ)|e−τκ.

This implies that

2 sup
ζ∈J

|Q(m1)(ζ)−Q(m2)(ζ)|e−τζ ≤ 2e−τ sup
κ∈J

|m1(κ)−m2(κ)|e−τκ,
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or equivalently,

S(Q(m1), Q(m1), Q(m2)) ≤ e−τ S(m1,m1,m2),

or,

S(Q(m1), Q(m1), Q(m2)) ≤ e−τ S(m1,m1,m2) ≤ e−τ Ω(m1,m1,m2).

Thus, we obtain

S(Q(m1), Q(m1), Q(m2)) ≤ e−τ Ω(m1,m1,m2).

After going through a natural logarithm, we can write this as

ln
(
S(Q(m1), Q(m1), Q(m2))

)
≤ ln

(
e−τ Ω(m1,m1,m2)

)
,

and, after routine calculations, we get

τ + ln
(
S(Q(m1), Q(m1), Q(m2))

)
≤ ln

(
Ω(m1,m1,m2)

)
.

Now, we see that the function F : R+ → R defined by F(u) = ln (u), for each u ∈ C(J = [0,Λ],R), is
in FS , so we deduce that the operator Q satisfies all the conditions of consequence mentioned in (1) with
α(m1,m1,m2) = 1. Hence by its application, the operator Q has a fixed point m∗ ∈ C(J,R), that is, m∗ is
a solution of Fredholm type integral equation (34).

(A2) In this part, we establish the existence and uniqueness of the solution of a fractional differential
equation involving the Caputo Atangana-Baleanu via fixed point procedure

Dαη(t) = f(t, η(t)), t ∈ I = [0, 1],

η(0) = δ, (37)

where Dλ is the Atangana-Baleanu derivative of order λ, η : I → R, f ∈ C(I,R) are continuous functions
such that f(0, x(0)) = 0, α ∈ (0, 1) and δ is a constant. Let M = C([0, 1],R) be the space of continuous
function defined on [0, 1].

Definition 5.2. ([3, 14, 25]) Let η ∈ H1(a, b) with a < b and α ∈ [0, 1]. The Caputo Atangana-Baleanu
fractional derivative of η of order α is defined by

Dαη(t) =
B(α)

1− α

∫ t

a
η′(x)Eα

[
− α

(t− x)α

1− α

]
dx, (38)

where Eα is the Mittage-Leffler function defined by

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
, (39)

and B(α) is a normalizing positive function satisfying B(0) = B(1) = 1. Then, the associative fractional
integral is given by

Iαη(t) =
1− α

B(α)
η(t) +

α

B(α)
aI

αη(t), (40)

where aI
α is the left Riemann-Liouville fractional integral given as

aI
αη(t) =

1

Γα

∫ t

a
(t− x)α−1η(x)dx. (41)

Proposition 5.3. ([3]) For 0 < α < 1, we have

IαaD
αη(x) = η(x)− η(a).
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Let M = C([0, 1],R) be the set of all continuous functions defined on [0, 1]. Consider

ζ(t) =
1− κ

B(κ)
ζ(t) +

κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1ζ(y)dy, (42)

where ζ(t) ∈ M.
Now, we shall investigate the existence and uniqueness solution of (42).
Define the single valued operator Q : M → M by

Qζ(t) =
1− κ

B(κ)
ζ(t) +

κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1ζ(y)dy. (43)

Let S : M×M×M → R+ be defined by

S(v1, v2, v3) = ∥v1 − v3∥+ ∥v2 − v3∥
= sup

t∈I
{|v1(t)− v3(t)|+ |v2(t)− v3(t)|}, (44)

for all v1, v2, v3 ∈ M, where I = [0, 1]. Then clearly (M, S) is a complete S-metric space.
Now, we will prove that fractional integral of Atangana-Baleanu type has no more than one solution in

the view of the following perspective:

1− κ

B(κ)
+

tκ

B(κ)Γ(κ)
< ue−τ ,

where u ∈ (0, 1) and τ > 0.
Consider,

|Qζ(t)−Qν(t)| =
∣∣∣(1− κ

B(κ)
ζ(t) +

κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1ζ(y)dy

)
−
(1− κ

B(κ)
ν(t) +

κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1ν(y)dy

)∣∣∣
=

∣∣∣1− κ

B(κ)
(ζ(t)− ν(t)) +

κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1(ζ(y)− ν(y))dy

∣∣∣
≤ 1− κ

B|κ)
|ζ(t)− ν(t)|+ κ

B(κ)Γ(κ)

∫ t

0
(t− y)κ−1|ζ(y)− ν(y)|dy

=
(1− κ

B|κ)
+

tκ

B(κ)Γ(κ)

)
|ζ(t)− ν(t)|

≤ u e−τ |ζ(t)− ν(t)| ≤ e−τ |ζ(t)− ν(t)|.

This implies that

2|Qζ(t)−Qν(t)| ≤ 2e−τ |ζ(t)− ν(t)|.

Taking supt∈I on both sides, we get

S(Q(ζ), Q(ζ), Q(ν)) ≤ e−τS(ζ, ζ, ν) ≤ e−τΩ(ζ, ζ, ν),

that is,

S(Q(ζ), Q(ζ), Q(ν)) ≤ e−τΩ(ζ, ζ, ν).

Taking natural logarithm of both sides, we have that

τ + ln
(
S(Q(ζ), Q(ζ), Q(ν))

)
≤ ln

(
Ω(ζ, ζ, ν)

)
.

Taking F(a) = ln(a), we have

τ + F
(
S(Q(ζ), Q(ζ), Q(ν))

)
≤ F

(
Ω(ζ, ζ, ν)

)
,
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that is, Q is a (α,F)-contraction for single valued mapping with α(ζ, ζ, ν) = 1. Thus all the assumptions
of consequence (1) are satisfied, which yields, fractional integral of Atangana-Baleanu type of order κ has a
unique solution.

6. Conclusion

In this article, we initiate the concept of new multi-valued contractions called (α,F)-contractions and
establish some fixed point results for such contractions in the setting of complete S-metric spaces. In addition,
we illustrate our main results with concrete examples. Furthermore, some applications are also discussed for
deeper understanding of the established results. The results demonstrated in this paper extend, generalize
and enrich several conclusions in the current literature.
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