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Abstract

In this paper, we propose a shrinking projection method with extended allowable ranges for approximating
a common fixed point of a family of nonlinear mappings in a Banach space. Our approach combines and
improves the ideas from Kimura [9], which allowed nonsummable errors, and Takeuchi [21], who introduced
allowable ranges into the shrinking projection method. Using our method, we prove strong convergence
theorems for approximating a common fixed point of a family of nonlinear mappings of quasi-nonexpansive
type in Banach spaces.

Keywords: Shrinking projection method, allowable range, common fixed point, common attractive point
2020 MSC: 47H09, 47H10, 47J25

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space. A mapping T : C → E is said
to be nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for each x, y ∈ C. Fixed point approximation methods for
nonexpansive mappings play an important role in nonlinear analysis and its applications. One useful method
is the shrinking projection method introduced by Takahashi, Takeuchi, and Kubota [20].

Theorem 1.1 ([20]). Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
T be a nonexpansive mapping of C into itself such that F (T ) := {z ∈ C : z = Tz} is nonempty. Let {αn} be
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a sequence in [0, a], where 0 < a < 1. For a point x ∈ H chosen arbitrarily, generate a sequence {xn} by the
following iterative scheme: x1 ∈ C, C1 = C, and

yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : ∥z − yn∥ ≤ ∥z − xn∥},
xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PF (T )x ∈ C, where PK is the metric projection of H onto a
nonempty closed convex subset K of H.

We note that the original result of this theorem is a convergence theorem to a common fixed point of
a family of nonexpansive mappings. Since then, many researchers have studied this method. In particular,
Kimura and Takahashi [12] improved the method by using the concept of Mosco convergence in their proof.
They obtained strong convergence theorems for a common fixed point of a family of relatively nonexpansive
mappings in a Banach space.

However, the shrinking projection method requires the exact calculation of metric projections at each step.
This calculation becomes more difficult as the iteration proceeds. To solve this problem, Kimura [9] proposed
the shrinking projection method with nonsummable errors, which allows errors in the approximations of the
exact metric projections PCnx that stay inside the sets Cn; see also [10, 11]. Inspired by Kimura [9],
Takeuchi [21] proposed another method called the shrinking projection method with allowable ranges. This
method allows errors outside the sets Cn in the approximations of the metric projections.

On the other hand, in the study of common fixed point approximation methods, Ibaraki and Takeuchi [6]
extended the concept of a quasi-nonexpansive mapping to a family of nonlinear mappings by using the
concept of an attractive point [19] for nonlinear mappings in Hilbert spaces. In 2013, Lin and Takahashi [13]
extended the concept of an attractive point to Banach spaces.

Motivated by the works above, we propose a new shrinking projection method that allows errors both
inside and outside the target sets. Using our method, we prove strong convergence theorems for finding a
common fixed point of a family of nonlinear mappings of quasi-nonexpansive type in Banach spaces.

2. Preliminaries

Let E be a real Banach space with its dual E∗. Let {xn} be a sequence in E. The strong and the weak
convergence of {xn} to a point x ∈ E are denoted by xn → x and xn ⇀ x, respectively. The normalized
duality mapping J : E → E∗ is defined by

Jx = {y∗ ∈ E∗ : ∥x∥2 = ⟨x, y∗⟩ = ∥y∗∥2}

for x ∈ E. It is known that if E is smooth, then the normalized duality mapping J is single-valued and
norm-to-weak∗ continuous. We also know that if E is reflexive, smooth, and strictly convex, then J is a
bijection and the duality mapping on E∗ is J−1; see, for instance, [18]. A Banach space E is said to have the
Kadec-Klee property if a sequence {xn} of E satisfying xn ⇀ x0 and ∥xn∥ → ∥x0∥ converges strongly to x0.

Let E be a reflexive and strictly convex Banach space and let C be a nonempty closed convex subset of
E. It is known that for each x ∈ E there exists a unique point z ∈ C such that

∥z − x∥ = inf
y∈C

∥y − x∥.

Such a point z is denoted by PCx and PC is called the metric projection of E onto C. We recall the following
results.

Lemma 2.1. Let C be a nonempty closed convex subset of a reflexive, smooth, and strictly convex Banach
space E, and let z ∈ C and x ∈ E. Then z = PCx if and only if ⟨y − z, J(z − x)⟩ ≥ 0 for all y ∈ C.
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Lemma 2.2 ([5]). Suppose that C is a nonempty closed convex subset of a reflexive and strictly convex
Banach space E and u ∈ E. If F is a nonempty closed convex subset of C such that PCu ∈ F , then
PFu = PCu.

Let E be a smooth Banach space and consider the following function V : E × E → R defined by

V (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for each x, y ∈ E. We know the following properties; see [1, 4, 15] for more details:

1. (∥x∥ − ∥y∥)2 ≤ V (x, y) ≤ (∥x∥+ ∥y∥)2 for each x, y ∈ E,
2. V (x, y) + V (y, x) = 2⟨x− y, Jx− Jy⟩ for each x, y ∈ E,
3. V (x, y) = V (x, z) + V (z, y) + 2⟨x− z, Jz − Jy⟩ for each x, y, z ∈ E,
4. if E is additionally assumed to be strictly convex, then V (x, y) = 0 if and only if x = y.

Let E be a reflexive, smooth, and strictly convex Banach space and let C be a nonempty closed convex
subset of E. It is known that for each x ∈ E there exists a unique point z ∈ C such that

V (z, x) = min
y∈C

V (y, x).

Such a point z is denoted by ΠCx and ΠC is called the generalized projection of E onto C; see [1]. We recall
the following results.

Lemma 2.3 ([1, 4]). Let C be a nonempty closed convex subset of a reflexive, smooth, and strictly convex
Banach space E, and let z ∈ C and x ∈ E. Then z = ΠCx if and only if ⟨y− z, Jz − Jx⟩ ≥ 0 for all y ∈ C.

Lemma 2.4 ([5]). Suppose that C is a nonempty closed convex subset of a reflexive, smooth, and strictly
convex Banach space E and u ∈ E. If F is a nonempty closed convex subset of C such that ΠCu ∈ F , then
ΠFu = ΠCu.

Let E be a Banach space and let {Cn} be a sequence of nonempty closed convex subsets of E. We denote
by s-LinCn the set of limit points of {Cn}, that is, x ∈ s-LinCn if and only if there exists {xn} ⊂ E such
that xn ∈ Cn for each n ∈ N and {xn} converges strongly to x. Similarly, we denote by w-LsnCn the set of
cluster points of {Cn}; y ∈ w-LsnCn if and only if there exists {yni} ⊂ E such that yni ∈ Cni for each i ∈ N
and {yni} converges weakly to y. Using these definitions, we define the Mosco convergence [16] of {Cn}. If
C0 satisfies

s-Li
n
Cn = C0 = w-Ls

n
Cn,

we say that {Cn} is a Mosco convergent sequence to C0 and denote it

C0 = M-lim
n

Cn.

Notice that the inclusion s-LinCn ⊂ w-LsnCn is always true. So, to show C0 = M-limnCn we may
show w-LsnCn ⊂ s-LinCn. We show an example of the Mosco convergent sequence {Cn}: Let {Cn} be a
sequence of nonempty closed convex subsets of a Banach E such that Cn+1 ⊂ Cn for each n ∈ N. Then,
M-limnCn = ∩nCn; see [16] for more details. We recall the following theorems for nonlinear projections.

Theorem 2.5 ([22]). Let E be a reflexive and strictly convex Banach space and let {Cn} be a sequence of
nonempty closed convex subsets of E. If C0 = M-limnCn exists and nonempty, then for each x ∈ E, {PCnx}
converges weakly to PC0x. Moreover, if E has the Kadec-Klee property, the convergence is in the strong
topology.

Theorem 2.6 ([4]). Let E be a reflexive, smooth, and strictly convex Banach space and let {Cn} be a sequence
of nonempty closed convex subsets of E. If C0 = M-limnCn exists and nonempty, then C0 is a closed convex
subset of E and, for each x ∈ E, {ΠCnx} converges weakly to ΠC0x. Moreover, if E has the Kadec-Klee
property, the convergence is in the strong topology.
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3. Nonlinear mappings and Attractive points

Let C be a nonempty closed convex subset of a Banach space E and let T : C → E be a mapping. We
denote by F (T ) the set of all fixed points of T . I −T is said to be closed at zero if u ∈ F (T ) holds whenever
a sequence {xn} in C satisfying xn → u and xn − Txn → 0, where I is the identity mapping on E. A point
p in C is said to be an asymptotic fixed point [17] of T if C contains a sequence {xn} such that xn ⇀ p and
xn − Txn → 0. The set of all asymptotic fixed points of T is denoted by F̂ (T ). Let E be a smooth Banach
space. A mapping T is said to be relatively nonexpansive [3, 14, 17] if F̂ (T ) = F (T ) ̸= ∅ and

V (p, Tx) ≤ V (p, x) (1)

for each p ∈ F (T ) and x ∈ C. A mapping T is said to be nonspreading [7] if

V (Tx, Ty) + V (Ty, Tx) ≤ V (Ty, x) + V (Tx, y)

for each x, y ∈ C. A mapping T is said to be of type (Q) [2, 8] if

V (Tx, x) + V (Ty, y) + V (Tx, Ty) + V (Ty, Tx) ≤ V (Ty, x) + V (Tx, y)

for each x, y ∈ C. It is known that if a mapping T is nonspreading with F (T ) ̸= ∅, then it satisfies (1) for
each p ∈ F (T ) and x ∈ C. It is also obvious that if a mapping T is of type (Q), then T is nonspreading. We
now state the following lemma. Since its proof is almost identical to that of [7, Lemma 3.2], we omit it here;
for more details, see [7].

Lemma 3.1. Let E be a smooth and strictly convex Banach space, let C be a nonempty closed convex subset
of E and let T be a nonspreading mapping from C into itself. Then I − T is closed at zero.

Let C be a nonempty closed convex subset of a smooth Banach space E and let T : C → E be a mapping.
A point z in E is said to be an attractive point [13, 19] of T if

V (z, Tx) ≤ V (z, x)

for each x ∈ C. The set of all attractive points of T is denoted by A(T ). We know that A(T ) is closed and
convex; see [13]. We consider the mapping T : C → E defined by the condition that F (T ) ̸= ∅ and

V (p, Tx) ≤ V (p, x)

for each p ∈ F (T ) and x ∈ C. It is clear that a mapping T satisfies this condition if and only if

∅ ≠ F (T ) ⊂ A(T ). (2)

Moreover, if E is additionally assumed to be strictly convex, then F (T ) is closed and convex; see [15].
From the previous discussion, if a mapping T is relatively nonexpansive, nonspreading, or of type (Q)

with F (T ) ̸= ∅, then the following hold:

• T satisfies the condition (2),

• I − T is closed at zero,

• F (T ) is closed and convex.

Next, we describe the conditions for the family of nonlinear self-mappings in this work, based on Ibaraki
and Takeuchi [6]: Let C be a nonempty closed convex subset of a reflexive, smooth, and strictly convex
Banach space E. Let {Tλ : λ ∈ Λ} be a family of self-mappings on C. We assume the following conditions:

1. ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ)
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2. I − Tλ is closed at zero for each λ ∈ Λ.

It should be noted that the condition ∅ ̸= F ⊂ A does not necessarily imply that ∅ ≠ F (Tλ) ⊂ A(Tλ) for
every λ ∈ Λ. However, it follows immediately that if each mapping Tλ satisfies F (Tλ) ⊂ A(Tλ), then F ⊂ A
holds. Furthermore, under these conditions, F is closed and convex. This follows immediately from [15,
Proposition 2.4]. For an illustration, we present an example in Euclidean space R2 involving two mappings
that satisfy these conditions: see [6] for more details.

Example 3.2 ([6]). Let C =
{
x = (s, t) ∈ R2 : s ∈ [0, 1], t ∈

[
1
2s, 2

]}
. Then C is compact and convex. Let

T1 and T2 be self-mappings on C defined by

T1x =

(
1

2
s+

1

4
t, t

)
, T2x =

(
s,

1

4
s+

1

2
t

)
for each x = (s, t) ∈ C Then we can easily observe the following:

• I − Tj is closed at zero for j = 1, 2,

• ∅ ≠ ∩2
j=1F (Tj) ⊂ ∩2

j=1A(Tj),

• Neither T1 nor T2 satisfies the condition (2).

We need the following two lemmas. The first was proved in [12].

Lemma 3.3 ([12]). Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable
norm, let C be a nonempty closed convex subset of E, and let {Si} be a sequence of self-mappings on C.
Let {xi} be a strongly convergent sequence in C with a limit x0 and {yi} be a sequence in E defined by
yi = J−1(αiJxi + (1 − αi)JSixi) for each i ∈ N, where {αi} is a convergent sequence in [0, 1] with a limit
α0 ∈ [0, 1[. Suppose that V (x0, yi) ≤ V (x0, xi) for all i ∈ N and that {Jyi} converges weakly to y∗0 ∈ E∗.
Then, {Jxi − JSixi} converges strongly to 0. Moreover, if E has the Kadec-Klee property, then {Sixi}
converges strongly to x0.

Remark 3.4. Although Kimura and Takahashi [12] assume that {yi} ⊂ C, a careful examination of the
proof in [12] shows that the argument for Lemma 3.3 still holds under the present assumptions.

Lemma 3.5. Let E be a reflexive, smooth, and strictly convex Banach space, let C be a nonempty closed
convex subset of E. Let {Tλ : λ ∈ Λ} be a family of self-mappings on C such that ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂
A := ∩λ∈ΛA(Tλ) and let D be a nonempty closed convex subset of C such that F ⊂ D. Let α ∈ [0, 1] and
x ∈ C. Let y(λ) = J−1(αJx+ (1− α)JTλx) for each λ ∈ Λ. Let M be a subset of E defined by

M :=

{
z ∈ D : sup

λ∈Λ
V (z, y(λ)) ≤ V (z, x)

}
.

Then, M is closed and convex, and F ⊂ M .

Proof. Let α ∈ [0, 1] and x ∈ C. Put

ME :=

{
z ∈ E : sup

λ∈Λ
V (z, y(λ)) ≤ V (z, x)

}
.

From the convexity of the norm and the assumption of T , it follows that

sup
λ∈Λ

V (p, y(λ)) ≤ sup
λ∈Λ

{αV (p, x) + (1− α)V (p, Tλx)}

≤ sup
λ∈Λ

{αV (p, x) + (1− α)V (p, x)}

= αV (p, x) + (1− α)V (p, x) = V (p, x)
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for each p ∈ F and hence we have F ⊂ ME . Thus, we have F ⊂ ME ∩D = M . From the definition of V ,
we obtain that

ME =

{
z ∈ E : sup

λ∈Λ
V (z, y(λ)) ≤ V (z, x)

}
=

⋂
λ∈Λ

{z ∈ E : V (z, y(λ)) ≤ V (z, x)}

=
⋂
λ∈Λ

{z ∈ E : 2⟨z, Jx− Jy(λ)⟩+ ∥y(λ)∥2 − ∥x∥2 ≤ 0}

and thus ME is closed and convex. Therefore, it follows that M(= ME ∩D) is also closed and convex.

4. Shrinking projection method using metric projection

In this section, we study a shrinking projection method with extended allowable ranges that uses the
metric projection. We first establish the following strong convergence theorem for finding a common fixed
point of a family of nonlinear mappings in a Banach space.

Theorem 4.1. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence in
[0, 1] such that lim infn→∞ αn < 1 and let {δn} be a nonnegative real sequence such that limn→∞ δn = 0. For
a given point u ∈ E, generate a sequence {xn} by the following iterative scheme: C1 = D1 = C, x1 ∈ D1,
and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Dn+1 = {y ∈ Cn : ∥u− y∥ ≤ ∥u− PCn+1u∥+ δn},
xn+1 ∈ Dn+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to PFu.

Proof. We first show that, for each n ∈ N, Cn is closed and convex, satisfies F ⊂ Cn, and Dn is nonempty.
It is clear that C1 and D1 satisfy these condition. Thus, we can take x1 ∈ D1 = C. Suppose that, for some
k ∈ N, Ck is closed and convex, satisfies F ⊂ Ck, and Dk is nonempty. Using Lemma 3.5 as x = xk, D = Ck,
M = Ck+1, we see that Ck+1 is closed and convex, and satisfies F ⊂ Ck+1. Thus, PCk+1

u exists. Since
δk ≥ 0, we have

∥u− PCk+1
u∥ ≤ ∥u− PCk+1

u∥+ δk.

Because PCk+1
u ∈ Ck+1 ⊂ Ck, it follows that PCk+1

u ∈ Dk+1. Hence Dk+1 is nonempty. By induction, we
see that, for each n ∈ N, Cn is closed and convex, satisfies F ⊂ Cn, and Dn is nonempty. Hence {xn} is
well-defined.

Since Cn includes F ̸= ∅ for all n ∈ N, {Cn} is a sequence of nonempty closed convex subsets and, by
definition, it is decreasing with respect to inclusion. Let pn := PCnu for all n ∈ N and put C0 :=

⋂∞
n=1Cn.

Then it follows that
∅ ≠ F ⊂ C0 = M-lim

n
Cn.

By Theorem 2.5, we obtain that {pn} converges strongly to p0 = PC0u. Since xn+1 ∈ Dn+1 ⊂ Cn for each
n ∈ N, we obtain

∥u− pn∥ ≤ ∥u− xn+1∥ ≤ ∥u− pn+1∥+ δn
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for each n ∈ N. Since pn → p0 and δn → 0, we have

∥u− p0∥ = lim
n→∞

∥u− pn∥ ≤ lim inf
n→∞

∥u− xn+1∥

≤ lim sup
n→∞

∥u− xn+1∥

≤ lim
n→∞

(∥u− pn+1∥+ δn) = ∥u− p0∥.

Therefore, we have limn→∞ ∥u − xn∥ = ∥u − p0∥. We also obtain that {xn} is bounded. Let {xni} be a
subsequence of {xn} such that {xni} converges weakly to x0 ∈ C. Since xni ∈ Cni−1 for each i ∈ N\{1}, we
see that

x0 ∈ w-Ls
n
Cn = M-lim

n
Cn = C0.

Thus, by the weak lower semicontinuity of the norm, we obtain

∥u− x0∥ ≤ lim inf
i→∞

∥u− xni∥ = lim
n→∞

∥u− xn∥ = ∥u− p0∥.

From the uniqueness of PC0u, we have x0 = p0. So, {xn} converges weakly to p0 and hence {u−xn} converges
weakly to u− p0. Since E has the Kadec-Klee property, we see that {u− xn} converges strongly to u− p0.
Thus, {xn} converges strongly to p0.

Fix λ ∈ Λ arbitrarily. Since V (p0, yn(λ)) ≤ V (p0, xn) for each n ∈ N, {Jyn(λ)} is bounded. Hence,
by the assumption that lim infn→∞ αn < 1, we may take subsequences {αni} of {αn} and {Jyni(λ)} of
{Jyn(λ)} such that limi→∞ αni = α0 with 0 ≤ α0 < 1 and {Jyni(λ)} converges weakly to a point y∗0 ∈ E∗.
By Lemma 3.3, {Tλxni} converges strongly to p0. Therefore, {xni −Tλxni} converges strongly to 0. For each
λ ∈ Λ, since I − Tλ is closed at zero, it follows that p0 ∈ F (Tλ), and hence p0 ∈ F . From Lemma 2.2, we
obtain PC0u = PFu.

Remark 4.2. Note that in Theorem 4.1, xn+1 is not necessarily contained in Cn+1, which is one of the
features of our method. We also remark that the assumptions on E are satisfied if E is a Hilbert space.
Moreover, we note that E∗ has a Fréchet differentiable norm if and only if E is reflexive, strictly convex, and
has the Kadec-Klee property. Therefore, the assumptions on E are satisfied if E is uniformly convex and
has a Fréchet differentiable norm.

We present three results below that are derived from Theorem 4.1. Each result is closely related to the
previous work. The first is the shrinking projection method proposed in [20]; see also [12].

Theorem 4.3. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ̸= F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence
in [0, 1] such that lim infn→∞ αn < 1. For a given point u ∈ E, generate a sequence {xn} by the following
iterative scheme: C1 = C, x1 ∈ C1, and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

xn+1 = PCn+1u

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to PFu.

Proof. In the Theorem 4.1, PCn+1u is always chosen as xn+1 from Dn+1. As a direct consequence of Theo-
rem 4.1, the sequence {xn} converges strongly to PFu.

The following two results correspond to the methods studied in [9] and [21], respectively.
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Theorem 4.4. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence in
[0, 1] such that lim infn→∞ αn < 1 and let {δn} be a nonnegative real sequence such that limn→∞ δn = 0. For
a given point u ∈ E, generate a sequence {xn} by the following iterative scheme: C1 = K1 = C, x1 ∈ K1,
and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Kn+1 = {y ∈ Cn+1 : ∥u− y∥ ≤ ∥u− PCn+1u∥+ δn},
xn+1 ∈ Kn+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to PFu.

Proof. Let {Dn} be as in Theorem 4.1. Since Cn+1 ⊂ Cn for each n ∈ N, it follows that

Kn+1 ⊂ Dn+1

for each n ∈ N. Because each Cn is nonempty, closed, and convex for each n ∈ N, we see that PCn+1u ∈ Kn+1.
Hence, Kn+1 is nonempty for each n ∈ N. In Theorem 4.1, by choosing xn+1 ∈ Kn+1 ⊂ Dn+1, it follows as
a direct consequence that {xn} converges strongly to PFu.

Theorem 4.5. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ̸= F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence
in [0, 1] such that lim infn→∞ αn < 1. For a given point u ∈ E, generate a sequence {xn} by the following
iterative scheme: C1 = L1 = C, x1 ∈ L1, and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Ln+1 = {y ∈ Cn : ∥u− y∥ ≤ ∥u− PCn+1u∥},
xn+1 ∈ Ln+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to PFu.

Proof. Let {δn} and {Dn} be as in Theorem 4.1. Since {δn} is nonnegative real sequence, it follows that

Ln+1 ⊂ Dn+1

for each n ∈ N. Because each Cn is nonempty, closed, and convex, and Cn+1 ⊂ Cn for each n ∈ N,
we see that PCn+1u ∈ Ln+1. Therefore, Ln+1 is nonempty for each n ∈ N. In Theorem 4.1, by taking
xn+1 ∈ Ln+1 ⊂ Dn+1, it follows that {xn} converges strongly to PFu.

5. Shrinking projection methods for generalized projections

This section treats the shrinking projection method with extended allowable ranges via generalized pro-
jection. We first present a strong convergence theorem for a common fixed point of a family of nonlinear
mappings in Banach spaces.
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Theorem 5.1. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence in
[0, 1] such that lim infn→∞ αn < 1 and let {δn} be a nonnegative real sequence such that limn→∞ δn = 0. For
a given point u ∈ E, generate a sequence {xn} by the following iterative scheme: C1 = D1 = C, x1 ∈ D1,
and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Dn+1 = {y ∈ Cn : V (y, u) ≤ V (ΠCn+1u, u) + δn},
xn+1 ∈ Dn+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to ΠFu.

Proof. We first show that, for each n ∈ N, Cn is closed and convex, satisfies F ⊂ Cn, and Dn is nonempty.
It is clear that C1 and D1 satisfy these condition. Thus, we can take x1 ∈ D1 = C. Suppose that, for some
k ∈ N, Ck is closed and convex, satisfies F ⊂ Ck, and Dk is nonempty. Using Lemma 3.5 as x = xk, D = Ck,
M = Ck+1, we see that Ck+1 is closed and convex, and satisfies F ⊂ Ck+1. Thus, ΠCk+1

u exists. Since
δk ≥ 0, we have

V (ΠCk+1
u, u) ≤ V (ΠCn+1u, u) + δk.

Because ΠCk+1
u ∈ Ck+1 ⊂ Ck, it follows that ΠCk+1

u ∈ Dk+1. Hence Dk+1 is nonempty. By induction, we
see that, for each n ∈ N, Cn is closed and convex, satisfies F ⊂ Cn, and Dn is nonempty. Hence {xn} is
well-defined.

Since Cn includes F ̸= ∅ for all n ∈ N, {Cn} is a sequence of nonempty closed convex subsets and, by
definition, it is decreasing with respect to inclusion. Let πn := ΠCnu for all n ∈ N and put C0 :=

⋂∞
n=1Cn.

Then it follows that
∅ ≠ F ⊂ C0 = M-lim

n
Cn.

By Theorem 2.6, we obtain that {πn} converges strongly to π0 = ΠC0u. Since xn+1 ∈ Dn+1 ⊂ Cn for each
n ∈ N, we obtain

V (πn, u) ≤ V (xn+1, u) ≤ V (πn+1, u) + δn

for each n ∈ N. Since πn → π0 and δn → 0, we have

V (π0, u) = lim
n→∞

V (πn, u) ≤ lim inf
n→∞

V (xn+1, u)

≤ lim sup
n→∞

V (xn+1, u)

≤ lim
n→∞

{V (πn+1, u) + δn} = V (π0, u).

Therefore, we get limn→∞ V (xn, u) = V (π0, u). We also obtain that {xn} is bounded. Let {xni} be a
subsequence of {xn} such that {xni} converges weakly to x0 ∈ C. Since xni ∈ Cni−1 for each i ∈ N\{1}, we
see that

x0 ∈ w-Ls
n
Cn = M-lim

n
Cn = C0.

Thus, by the weak lower semicontinuity of the norm, we obtain

V (x0, u) = ∥x0∥2 − 2⟨x0, Ju⟩+ ∥u∥2

≤ lim inf
i→∞

{
∥xni∥2 − 2⟨xni , Ju⟩+ ∥u∥2

}
= lim inf

i→∞
V (xni , u) = lim

n→∞
V (xn, u) = V (π0, u).



T.Ibaraki, Lett. Nonlinear Anal. Appl. 4 (2026), 1-13 10

From the uniqueness of ΠC0u, we have x0 = π0. So, {xn} converges weakly to π0. Using the properties of
V , we have ∣∣∥xn∥ − ∥π0∥

∣∣2 ≤ V (xn, π0) = V (xn, u)− V (π0, u)− 2⟨xn − π0, Jπ0 − Ju⟩.
Therefore, it follows from V (xn, u) → V (π0, u) and xn ⇀ π0 that {∥xn∥} converges to ∥π0∥. Since E has
the Kadec-Klee property, {xn} converges strongly to π0.

Fix λ ∈ Λ arbitrarily. It follows from V (π0, yn(λ)) ≤ V (π0, xn) for each n ∈ N that {Jyn(λ)} is bounded.
Hence, by the assumption that lim infn→∞ αn < 1, we may take subsequences {αni} of {αn} and {Jyni(λ)}
of {Jyn(λ)} such that limi→∞ αni = α0 with 0 ≤ α0 < 1 and {Jyni(λ)} converges weakly to a point y∗0 ∈ E∗.
By Lemma 3.3, {Tλxni} converges strongly to π0. Therefore, {xni − Tλxni} converges strongly to 0. For
each λ ∈ Λ, since I − Tλ is closed at zero, it follows that π0 ∈ F (Tλ) and hence π0 ∈ F . From Lemma 2.4,
we obtain ΠC0u = ΠFu.

We present three results below that are derived from Theorem 5.1. Each result is closely related to the
previous work. The first is the shrinking projection method proposed in [20]; see also [12].

Theorem 5.2. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ̸= F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence
in [0, 1] such that lim infn→∞ αn < 1. For a given point u ∈ E, generate a sequence {xn} by the following
iterative scheme: C1 = C, x1 ∈ C1, and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

xn+1 = ΠCn+1u

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to ΠFu.

Proof. In the Theorem 5.1, ΠCn+1u is always chosen as xn+1 from Dn+1. As a direct consequence of Theo-
rem 5.1, the sequence {xn} converges strongly to ΠFu.

The following two results correspond to the methods studied in [9] and [21], respectively.

Theorem 5.3. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ≠ F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence in
[0, 1] such that lim infn→∞ αn < 1 and let {δn} be a nonnegative real sequence such that limn→∞ δn = 0. For
a given point u ∈ E, generate a sequence {xn} by the following iterative scheme: C1 = K1 = C, x1 ∈ K1,
and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Kn+1 = {y ∈ Cn+1 : V (y, u) ≤ V (ΠCn+1u, u) + δn},
xn+1 ∈ Kn+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to ΠFu.

Proof. Let {Dn} be as in Theorem 5.1. Since Cn+1 ⊂ Cn for each n ∈ N, it follows that

Kn+1 ⊂ Dn+1

for each n ∈ N. Because each Cn is nonempty, closed, and convex for each n ∈ N, we see that ΠCn+1u ∈ Kn+1.
Hence, Kn+1 is nonempty for each n ∈ N. In Theorem 5.1, by choosing xn+1 ∈ Kn+1 ⊂ Dn+1, it follows as
a direct consequence that {xn} converges strongly to ΠFu.



T.Ibaraki, Lett. Nonlinear Anal. Appl. 4 (2026), 1-13 11

Theorem 5.4. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a
family of self-mappings on C such that ∅ ̸= F := ∩λ∈ΛF (Tλ) ⊂ A := ∩λ∈ΛA(Tλ). Let {αn} be a sequence
in [0, 1] such that lim infn→∞ αn < 1. For a given point u ∈ E, generate a sequence {xn} by the following
iterative scheme: C1 = L1 = C, x1 ∈ L1, and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Ln+1 = {y ∈ Cn : V (y, u) ≤ V (ΠCn+1u, u)},
xn+1 ∈ Ln+1

for all n ∈ N. If I − Tλ is closed at zero for each λ ∈ Λ, then {xn} converges strongly to ΠFu.

Proof. Let {δn} and {Dn} be as in Theorem 5.1. Since {δn} is nonnegative real sequence, it follows that

Ln+1 ⊂ Dn+1

for each n ∈ N. Because each Cn is nonempty, closed, and convex, and Cn+1 ⊂ Cn for each n ∈ N,
we see that ΠCn+1u ∈ Ln+1. Therefore, Ln+1 is nonempty for each n ∈ N. In Theorem 5.1, by taking
xn+1 ∈ Ln+1 ⊂ Dn+1, it follows that {xn} converges strongly to ΠFu.

6. Deduced results

In this section, we present results deduced from the main theorems. We first state the common assump-
tions used throughout this section.

Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm and the
Kadec-Klee property, let C be a nonempty closed convex subset of E and let {Tλ : λ ∈ Λ} be a family of
self-mappings on C such that F := ∩λ∈ΛF (Tλ) ̸= ∅. Let {αn} be a sequence in [0, 1] and let {δn} be a
nonnegative real sequence.

We consider the iterative schemes given in Theorems 4.1 and 5.1. First, let {xn} be the sequence generated
by u ∈ E, C1 = D1 = C, x1 ∈ D1, and

yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Dn+1 = {y ∈ Cn : ∥u− y∥ ≤ ∥u− PCn+1u∥+ δn},
xn+1 ∈ Dn+1

(3)

for each n ∈ N. Next, let {xn} be the sequence generated by u ∈ E, C1 = D1 = C, x1 ∈ D1, and
yn(λ) = J−1(αnJxn + (1− αn)JTλxn) for each λ ∈ Λ,

Cn+1 =

{
z ∈ Cn : sup

λ∈Λ
V (z, yn(λ)) ≤ V (z, xn)

}
,

Dn+1 = {y ∈ Cn : V (y, u) ≤ V (ΠCn+1u, u) + δn},
xn+1 ∈ Dn+1

(4)

for each n ∈ N.
Finally, recalling the discussion in Section 3, we obtain the following results as direct consequences of

Theorems 4.1 and 5.1.

Theorem 6.1. Let {Tλ : λ ∈ Λ} be a family of relatively nonexpansive self-mappings on C such that F :=
∩λ∈ΛF (Tλ) ̸= ∅. Suppose that {xn} is the sequence generated by (3), lim infn→∞ αn < 1 and limn→∞ δn = 0.
Then {xn} converges strongly to PFu.



T.Ibaraki, Lett. Nonlinear Anal. Appl. 4 (2026), 1-13 12

Theorem 6.2. Let {Tλ : λ ∈ Λ} be a family of relatively nonexpansive self-mappings on C such that F :=
∩λ∈ΛF (Tλ) ̸= ∅. Suppose that {xn} is the sequence generated by (4), lim infn→∞ αn < 1 and limn→∞ δn = 0.
Then {xn} converges strongly to ΠFu.

Theorem 6.3. Let {Tλ : λ ∈ Λ} be a family of nonspreading self-mappings on C such that F := ∩λ∈ΛF (Tλ) ̸=
∅. Suppose that {xn} is the sequence generated by (3), lim infn→∞ αn < 1 and limn→∞ δn = 0. Then {xn}
converges strongly to PFu.

Theorem 6.4. Let {Tλ : λ ∈ Λ} be a family of nonspreading self-mappings on C such that F := ∩λ∈ΛF (Tλ) ̸=
∅. Suppose that {xn} is the sequence generated by (4), lim infn→∞ αn < 1 and limn→∞ δn = 0. Then {xn}
converges strongly to ΠFu.

Theorem 6.5. Let {Tλ : λ ∈ Λ} be a family of mappings of type (Q) from C into itself such that F :=
∩λ∈ΛF (Tλ) ̸= ∅. Suppose that {xn} is the sequence generated by (3), lim infn→∞ αn < 1 and limn→∞ δn = 0.
Then {xn} converges strongly to PFu.

Theorem 6.6. Let {Tλ : λ ∈ Λ} be a family of mappings of type (Q) from C into itself such that F :=
∩λ∈ΛF (Tλ) ̸= ∅. Suppose that {xn} is the sequence generated by (4), lim infn→∞ αn < 1 and limn→∞ δn = 0.
Then {xn} converges strongly to ΠFu.

7. Conclusion

In this paper, we proposed a new shrinking projection method for finding common fixed points of a
family of nonlinear mappings in Banach spaces, utilizing two types of nonlinear projections (Theorems 4.1
and 5.1). Our approach allows for errors in the nonlinear projection values at each iteration, which may lie
either inside or outside the target set. This method integrates key ideas from Kimura [9] and Takeuchi [21].

Kimura’s method [9], which was introduced in a geodesic space, deals with cases where the error sequence
does not necessarily converge to zero. Later, Kimura [10] studied a related problem in a Banach space. Our
work is also studied in a Banach space, but our method is designed for situations in which the error sequence
does converge to zero. Consequently, our approach requires weaker assumptions on the underlying space (see
Theorems 4.4 and 5.3).

Takeuchi’s method [21] requires that each new point in the sequence differs from the previous one, which
leads to two possible cases for the procedure: either stopping or continuing. By removing this requirement,
our method considers only the case where the procedure continues (Theorems 4.5 and 5.4).

Our results are not a full extension of Kimura [9] and Takeuchi [21], but rather a partial extension of
both. Unlike both works, our approach is motivated by the goal of weakening the assumptions of the theorem
and simplifying the theorem’s conclusion.
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