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Abstract

In this paper, we propose a shrinking projection method with extended allowable ranges for approximating
a common fixed point of a family of nonlinear mappings in a Banach space. Our approach combines and
improves the ideas from Kimura [9], which allowed nonsummable errors, and Takeuchi [21], who introduced
allowable ranges into the shrinking projection method. Using our method, we prove strong convergence
theorems for approximating a common fixed point of a family of nonlinear mappings of quasi-nonexpansive
type in Banach spaces.
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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space. A mapping T : C — FE is said
to be nonexpansive if ||Tx — Ty|| < ||z — y|| for each z,y € C. Fixed point approximation methods for
nonexpansive mappings play an important role in nonlinear analysis and its applications. One useful method
is the shrinking projection method introduced by Takahashi, Takeuchi, and Kubota [20].

Theorem 1.1 (|20]). Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H. Let
T be a nonexpansive mapping of C into itself such that F(T) :={z € C : z =Tz} is nonempty. Let {cv,} be
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a sequence in [0,a], where 0 < a < 1. For a point x € H chosen arbitrarily, generate a sequence {x,} by the
following iterative scheme: x1 € C, C1 = C, and

Yn = QpZp + (1 - an)Txna
Crnt1={2 € Cn [z —yn| < |lz — zall},

Tptl = Panx

forn € N. Then, {x,} converges strongly to Ppryx € C, where P is the metric projection of H onto a
nonempty closed convexr subset K of H.

We note that the original result of this theorem is a convergence theorem to a common fixed point of
a family of nonexpansive mappings. Since then, many researchers have studied this method. In particular,
Kimura and Takahashi [12| improved the method by using the concept of Mosco convergence in their proof.
They obtained strong convergence theorems for a common fixed point of a family of relatively nonexpansive
mappings in a Banach space.

However, the shrinking projection method requires the exact calculation of metric projections at each step.
This calculation becomes more difficult as the iteration proceeds. To solve this problem, Kimura [9] proposed
the shrinking projection method with nonsummable errors, which allows errors in the approximations of the
exact metric projections Pg,x that stay inside the sets Cp; see also [10, 11]. Inspired by Kimura [9],
Takeuchi [21] proposed another method called the shrinking projection method with allowable ranges. This
method allows errors outside the sets C), in the approximations of the metric projections.

On the other hand, in the study of common fixed point approximation methods, Ibaraki and Takeuchi [6]
extended the concept of a quasi-nonexpansive mapping to a family of nonlinear mappings by using the
concept of an attractive point [19] for nonlinear mappings in Hilbert spaces. In 2013, Lin and Takahashi [13]
extended the concept of an attractive point to Banach spaces.

Motivated by the works above, we propose a new shrinking projection method that allows errors both
inside and outside the target sets. Using our method, we prove strong convergence theorems for finding a
common fixed point of a family of nonlinear mappings of quasi-nonexpansive type in Banach spaces.

2. Preliminaries

Let E be a real Banach space with its dual E*. Let {z,,} be a sequence in E. The strong and the weak
convergence of {x,} to a point # € E are denoted by x,, — = and z,, — x, respectively. The normalized
duality mapping J : £ — E* is defined by

Jo={y" € E": |z|® = (z,y") = |ly"|I*}

for x € E. It is known that if F is smooth, then the normalized duality mapping J is single-valued and
norm-to-weak®™ continuous. We also know that if F is reflexive, smooth, and strictly convex, then J is a
bijection and the duality mapping on E* is J~!; see, for instance, [18]. A Banach space E is said to have the
Kadec-Klee property if a sequence {z,} of E satisfying x,, — x¢ and ||z,|| — ||zo|| converges strongly to zg.

Let E be a reflexive and strictly convex Banach space and let C' be a nonempty closed convex subset of
E. It is known that for each x € F there exists a unique point z € C such that

z — x| = inf ||y — x|

l =2l = inf fly — |

Such a point z is denoted by Pox and P¢ is called the metric projection of E onto C'. We recall the following
results.

Lemma 2.1. Let C be a nonempty closed convex subset of a reflexive, smooth, and strictly convex Banach
space E, and let z € C and x € E. Then z = Pox if and only if (y — z,J(z —x)) >0 for ally € C.
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Lemma 2.2 ([5]). Suppose that C is a nonempty closed convex subset of a reflexive and strictly convex
Banach space E and w € E. If F is a nonempty closed convex subset of C such that Pou € F, then
Pru = Pou.

Let E be a smooth Banach space and consider the following function V' : E x E — R defined by
V(z,y) = [l|® - 2{z, Jy) + |yl

for each z,y € E. We know the following properties; see [1, 4, 15| for more details:

L (=] = llylD* < V(z,y) < (=]l + [lyl})? for each z,y € E,

2. V(z,y) +V(y,z) = 2(z —y, Jx — Jy) for each z,y € E,

3. Vi(z,y) =V(x,z) + V(z,y) + 2(x — z,Jz — Jy) for each z,y,z € E,

4. if E is additionally assumed to be strictly convex, then V(z,y) = 0 if and only if z = y.

Let E be a reflexive, smooth, and strictly convex Banach space and let C be a nonempty closed convex
subset of E. It is known that for each = € E there exists a unique point z € C' such that
V(z,z) = min V(y, x).
yeC

Such a point z is denoted by IIcx and Il is called the generalized projection of E onto C'; see [1]. We recall
the following results.

Lemma 2.3 ([1, 4]). Let C be a nonempty closed convex subset of a reflexive, smooth, and strictly convex
Banach space E, and let z € C and x € E. Then z = [cx if and only if (y — z,Jz — Jx) >0 for all y € C.

Lemma 2.4 (|5]). Suppose that C is a nonempty closed convexr subset of a reflexive, smooth, and strictly
conver Banach space E and w € E. If F is a nonempty closed convex subset of C' such that Ilcu € F, then
Hru = Iou.

Let E be a Banach space and let {C),} be a sequence of nonempty closed convex subsets of E. We denote
by s-Li, C), the set of limit points of {C,}, that is, € s-Li, C), if and only if there exists {x,} C E such
that x,, € C), for each n € N and {x,,} converges strongly to x. Similarly, we denote by w-Ls, C, the set of
cluster points of {C),}; y € w-Ls,, C, if and only if there exists {y,,} C E such that y,, € C,, for each i € N
and {yn, } converges weakly to y. Using these definitions, we define the Mosco convergence [16] of {C),}. If
Cy satisfies

s—Iﬁi Cp=0Cy= W—I;LS Ch,

we say that {C),} is a Mosco convergent sequence to Cj and denote it

Co = M-lim C,,.

Notice that the inclusion s-Li, C,, C w-Ls, C,, is always true. So, to show Cy = M-lim, C,, we may
show w-Ls,, C,, C s-Li, C},. We show an example of the Mosco convergent sequence {Cy,}: Let {C),} be a
sequence of nonempty closed convex subsets of a Banach F such that Cp, 1 C C), for each n € N. Then,
M-lim,, C,, = N,,Cy; see [16] for more details. We recall the following theorems for nonlinear projections.

Theorem 2.5 ([22]). Let E be a reflexive and strictly convex Banach space and let {Cy} be a sequence of
nonempty closed convex subsets of E. If Co = M-lim,, C), ezists and nonempty, then for each x € E, {Pc, x}
converges weakly to Pcyx. Moreover, if E has the Kadec-Klee property, the convergence is in the strong
topology.

Theorem 2.6 ([4]). Let E be a reflexive, smooth, and strictly convex Banach space and let {C,,} be a sequence
of nonempty closed convex subsets of E. If Cy = M-lim,, C,, exists and nonempty, then Cy is a closed convex
subset of E and, for each v € E, {Ilc,x} converges weakly to IIc,x. Moreover, if E has the Kadec-Klee
property, the convergence is in the strong topology.
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3. Nonlinear mappings and Attractive points

Let C' be a nonempty closed convex subset of a Banach space E and let T': C' — E be a mapping. We
denote by F(T') the set of all fixed points of T'. I —T is said to be closed at zero if u € F(T) holds whenever
a sequence {x,} in C satisfying x,, — u and z,, — Tx,, — 0, where I is the identity mapping on E. A point
p in C' is said to be an asymptotic fixed point [17] of T if C' contains a sequence {z,} such that x,, — p and
T, — Tx, — 0. The set of all asymptotic fixed points of T" is denoted by a (T'). Let E be a smooth Banach
space. A mapping T is said to be relatively nonexpansive [3, 14, 17] if F(T) = F(T) # 0 and

V(p,Tz) < V(p,2) (1)
for each p € F(T) and x € C. A mapping T is said to be nonspreading [7] if
V(Tz, Ty)+V(Ty,Tz) <V (Ty,x)+ V(Tx,y)
for each z,y € C. A mapping T is said to be of type (Q) [2, 8] if
V(Tz,z)+V(Ty,y)+V(Tx,Ty) + V(Ty,Tz) < V(Ty,z) + V(Tz,y)

for each z,y € C. Tt is known that if a mapping T is nonspreading with F(T') # (), then it satisfies (1) for
each p € F(T) and x € C. It is also obvious that if a mapping 7T is of type (Q), then T is nonspreading. We
now state the following lemma. Since its proof is almost identical to that of |7, Lemma 3.2|, we omit it here;
for more details, see [7].

Lemma 3.1. Let E be a smooth and strictly convexr Banach space, let C be a nonempty closed convex subset
of E and let T be a nonspreading mapping from C'into itself. Then I —T is closed at zero.

Let C be a nonempty closed convex subset of a smooth Banach space E and let T': C' — E be a mapping.
A point z in E is said to be an attractive point [13, 19| of T if

V(z,Tx) < V(z,x)

for each x € C. The set of all attractive points of 7" is denoted by A(T"). We know that A(T) is closed and
convex; see [13]. We consider the mapping T': C — E defined by the condition that F(T") # () and

Vi(p,Tz) <V(p,x)
for each p € F(T) and x € C. It is clear that a mapping 7" satisfies this condition if and only if
0+ F(T)cC A(T). (2)

Moreover, if E is additionally assumed to be strictly convex, then F(T) is closed and convex; see [15].
From the previous discussion, if a mapping T is relatively nonexpansive, nonspreading, or of type (Q)
with F(T) # 0, then the following hold:

o T satisfies the condition (2),
e [ — T is closed at zero,
e F(T) is closed and convex.

Next, we describe the conditions for the family of nonlinear self-mappings in this work, based on Ibaraki
and Takeuchi [6]: Let C' be a nonempty closed convex subset of a reflexive, smooth, and strictly convex
Banach space E. Let {T) : A € A} be a family of self-mappings on C. We assume the following conditions:

1. 0 £ F = ﬂ,\eAF(T,\) C A= ﬂ)\eAA(T)\)
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2. I —T), is closed at zero for each A € A.

It should be noted that the condition () # F' C A does not necessarily imply that ) # F(Ty) C A(T») for
every A € A. However, it follows immediately that if each mapping T} satisfies F'(T)) C A(T)), then FF C A
holds. Furthermore, under these conditions, F' is closed and convex. This follows immediately from [15,
Proposition 2.4|. For an illustration, we present an example in Euclidean space R? involving two mappings
that satisfy these conditions: see [6] for more details.

Example 3.2 ([6]). Let C = {z = (s,t) e R?: s € [0,1], € [45,2]}. Then C is compact and convex. Let
T and T» be self-mappings on C' defined by

Tz = (;s + it, t) , Tox = <S, is + ;t)
for each = (s,t) € C' Then we can easily observe the following:
e [ —Tj is closed at zero for j =1, 2,
o 0# M F(T;) C N A(T)),
e Neither 77 nor Tb satisfies the condition (2).
We need the following two lemmas. The first was proved in [12].

Lemma 3.3 ([12]). Let E be a reflexive and strictly conver Banach space having a Fréchet differentiable
norm, let C' be a nonempty closed convex subset of E, and let {S;} be a sequence of self-mappings on C.
Let {z;} be a strongly convergent sequence in C with a limit xo and {y;} be a sequence in E defined by
yi = J Y ayJz; + (1 — ;) JSiz;) for each i € N, where {;} is a convergent sequence in [0,1] with a limit
ag € [0,1[. Suppose that V(xo,y;) < V(xo, ;) for all i € N and that {Jy;} converges weakly to yi € E*.
Then, {Jx; — JS;x;} converges strongly to 0. Moreover, if E has the Kadec-Klee property, then {S;x;}
converges strongly to xg.

Remark 3.4. Although Kimura and Takahashi [12| assume that {y;} C C, a careful examination of the
proof in [12] shows that the argument for Lemma 3.3 still holds under the present assumptions.

Lemma 3.5. Let E be a reflexive, smooth, and strictly convex Banach space, let C' be a nonempty closed
convex subset of E. Let {T\ : A\ € A} be a family of self-mappings on C' such that ) # F := MyxeaF(T) C
A = NMxepAA(Ty) and let D be a nonempty closed convexr subset of C' such that FF C D. Let a € [0,1] and
r€C. Let y(\) = J Y (aJz + (1 — a)JT\z) for each A\ € A. Let M be a subset of E defined by

M= {z € DsupV (2,y(N) < V(z,az)} :

Then, M 1is closed and convex, and FF C M.
Proof. Let o € [0,1] and x € C. Put

Mg = {z ekb: ilél}gV(z,y()\)) < V(Z,a:)}.

From the convexity of the norm and the assumption of T, it follows that

supV (p,y(A)) < sup{aV(p,z) + (1 — )V (p, Thz)}
AEA AEA

<sup{aV(p,z)+ (1 —a)V(p,x)}
AEA

=aV(p,z) + (1 —a)V(p,2) = V(p,z)
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for each p € F and hence we have F' C Mpg. Thus, we have F' C Mg N D = M. From the definition of V,
we obtain that

Mg = {z e E:supV (z,y(\) < V(z,x)}

AEA
= ({z€E:V(2,y(\) < V(z,2)}
AEA
= ({z € E:2(z,Jz — JyW) + lyMI* — [|=]* < 0}
AEA

and thus Mg is closed and convex. Therefore, it follows that M (= Mg N D) is also closed and convex. [

4. Shrinking projection method using metric projection

In this section, we study a shrinking projection method with extended allowable ranges that uses the
metric projection. We first establish the following strong convergence theorem for finding a common fixed
point of a family of nonlinear mappings in a Banach space.

Theorem 4.1. Let E be a reflexive and strictly convexr Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Ty : A € A} be a
family of self-mappings on C such that ) # F := NxepaF(Ty) C A := NxeaA(T)). Let {an} be a sequence in
[0,1] such that iminf, o o, < 1 and let {6} be a nonnegative real sequence such that limy,_,~ &, = 0. For
a given point uw € E, generate a sequence {xy,} by the following iterative scheme: Cy = D1 = C, x1 € Dy,
and

Yn(\) = J N anJy + (1 — a)JTzy) for each X € A,

Cp+1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
AEA

Dyt ={y € Cy:|lu—yll <|lu—Pe,, ull +dn},
Tni1 € Dpy

for allm € N. If I — T is closed at zero for each X\ € A, then {x,} converges strongly to Pru.

Proof. We first show that, for each n € N, (), is closed and convex, satisfies F' C C),, and D,, is nonempty.
It is clear that C; and D; satisfy these condition. Thus, we can take x1 € Dy = C. Suppose that, for some
k € N, (Y} is closed and convex, satisfies F' C C, and Dy, is nonempty. Using Lemma 3.5 as x = x, D = C},
M = Cgq1, we see that Cpyq is closed and convex, and satisfies F' C Cyyq. Thus, Pg,,,u exists. Since
O > 0, we have

”u - Pck+1u|| < Hu - Pck+1u” + O

Because Pg, ,u € Cgi1 C Cy, it follows that P, ,u € Dgy1. Hence Dy is nonempty. By induction, we
see that, for each n € N, (), is closed and convex, satisfies F' C C,, and D,, is nonempty. Hence {z,} is
well-defined.

Since C, includes F' # ) for all n € N, {C},} is a sequence of nonempty closed convex subsets and, by
definition, it is decreasing with respect to inclusion. Let p,, := Pc,u for all n € N and put Cy := ()2, Cp.
Then it follows that

0#£FcCCy= M—ligLnCn.

By Theorem 2.5, we obtain that {p,} converges strongly to pg = Pc,u. Since zp41 € Dypy1 C C,, for each
n € N, we obtain

lw = poll < llu = 2znpall < llu = ppgall +0n
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for each n € N. Since p,, — py and §,, — 0, we have

[u—poll = lim [ju—p,| <liminf[ju — 2p1]]
n—o0 n—oo

< limsup [[u — Zp44 |
n—oo

< lim (|lu = pry1l] + 9n) = [Ju — poll.
n—oo

Therefore, we have lim,_, ||u — || = ||u — po||. We also obtain that {z,} is bounded. Let {z,,} be a
subsequence of {z,} such that {z,,} converges weakly to ¢ € C. Since z,,, € Cy,_1 for each i € N\{1}, we
see that

To € W-I;LS C, = M—lirrln C, = Cy.

Thus, by the weak lower semicontinuity of the norm, we obtain

[l = @ol| <liminf[ju — 2y, || = lim |lu -2, = |Ju = pol|-
1—00 n—oo

From the uniqueness of Pr,u, we have g = pg. So, {z,} converges weakly to pp and hence {u—z,} converges
weakly to u — pp. Since E has the Kadec-Klee property, we see that {u — z,} converges strongly to u — py.
Thus, {x,} converges strongly to po.

Fix A € A arbitrarily. Since V(po, yn(A)) < V(po,zy) for each n € N, {Jyn(A\)} is bounded. Hence,
by the assumption that liminf, ,. o, < 1, we may take subsequences {ay,} of {a,} and {Jy,, (\)} of
{Jyn(A)} such that lim; o o, = ap with 0 < o < 1 and {Jyy, ()} converges weakly to a point y5 € E*.
By Lemma 3.3, {Thx,,} converges strongly to pg. Therefore, {z,,, — Thxy, } converges strongly to 0. For each
A € A, since I — T, is closed at zero, it follows that pg € F(T)), and hence py € F. From Lemma 2.2, we
obtain Po,u = Pru. O

Remark 4.2. Note that in Theorem 4.1, x,41 is not necessarily contained in Cj,41, which is one of the
features of our method. We also remark that the assumptions on E are satisfied if E is a Hilbert space.
Moreover, we note that £* has a Fréchet differentiable norm if and only if E is reflexive, strictly convex, and
has the Kadec-Klee property. Therefore, the assumptions on F are satisfied if F is uniformly convex and
has a Fréchet differentiable norm.

We present three results below that are derived from Theorem 4.1. Each result is closely related to the
previous work. The first is the shrinking projection method proposed in [20]; see also [12].

Theorem 4.3. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C' be a nonempty closed convex subset of E and let {T\ : A € A} be a
family of self-mappings on C such that ) # F := MyxeaF(T)) C A := MyxepA(Ty). Let {an} be a sequence
in [0,1] such that liminf, o oy < 1. For a given point u € E, generate a sequence {x,} by the following
iterative scheme: C1 = C, x1 € (1, and

Yn(\) = J N anJzy + (1 — a)JTay) for each X € A,

Cp+1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
AEA

Tny1 = Po, u
foralln € N. If I — T\ is closed at zero for each A € A, then {x,} converges strongly to Ppu.

Proof. In the Theorem 4.1, Pc, ,,u is always chosen as z,,41 from D, 1. As a direct consequence of Theo-
rem 4.1, the sequence {x,} converges strongly to Pru. O

The following two results correspond to the methods studied in [9] and [21], respectively.
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Theorem 4.4. Let E be a reflexive and strictly conver Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Ty : A € A} be a
family of self-mappings on C such that ) # F := NxepaF(Ty) C A := NxeaA(T)). Let {an} be a sequence in
[0,1] such that liminf, o v, < 1 and let {0,} be a nonnegative real sequence such that lim,_,~ 6, = 0. For
a given point u € E, generate a sequence {x,} by the following iterative scheme: C1 = K; = C, x1 € K,
and

Yn(\) = T anJzy + (1 — ) JThzy,) for each \ € A,

Cost = { € Cy i supV (2, 9n(N) < v<z,xn>} ,
AEA
Knsr = {y € Cusr : llu—yll < llu— P, ull + .},

Tpt1 € Kn+1
for allm € N. If I — T is closed at zero for each A € A, then {x,} converges strongly to Pru.

Proof. Let {D,,} be as in Theorem 4.1. Since C, 41 C C,, for each n € N, it follows that
Kn+1 C Dn+1

for each n € N. Because each C, is nonempty, closed, and convex for each n € N, we see that P¢, ., u € K, (1.
Hence, K41 is nonempty for each n € N. In Theorem 4.1, by choosing x, 11 € Kyp+1 C Dyy1, it follows as
a direct consequence that {x, } converges strongly to Pru. O

Theorem 4.5. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C' be a nonempty closed convex subset of E and let {T\ : A € A} be a
family of self-mappings on C such that ) # F := MyxeaF(T)) C A := MyepA(Ty). Let {an} be a sequence
in [0,1] such that liminf, o a, < 1. For a given point u € E, generate a sequence {x,} by the following
iterative scheme: C1 = L1 =C, z1 € L1, and

Yn(N) = J HanJzy + (1 — an)JTazy,) for each X € A,
Cp+1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
AEA
Lyt ={y € Cn: |lu—yl < llu—Po,,,ull},
Tn+1 € Lnta

foralln € N. If I — T\ is closed at zero for each A € A, then {x,} converges strongly to Ppu.

Proof. Let {05} and {D,,} be as in Theorem 4.1. Since {d,} is nonnegative real sequence, it follows that
Lpt1 C Dy

for each n € N. Because each C), is nonempty, closed, and convex, and Cp+1 C C),, for each n € N,
we see that P, . ,u € Ljy1. Therefore, L,;1 is nonempty for each n € N. In Theorem 4.1, by taking
Tnt1 € Lpt1 C Dyy1, it follows that {x,} converges strongly to Pru. O

5. Shrinking projection methods for generalized projections

This section treats the shrinking projection method with extended allowable ranges via generalized pro-
jection. We first present a strong convergence theorem for a common fixed point of a family of nonlinear
mappings in Banach spaces.
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Theorem 5.1. Let E be a reflexive and strictly convexr Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Ty : A € A} be a
family of self-mappings on C such that ) # F := NxepaF(Ty) C A := NxeaA(T)). Let {an} be a sequence in
[0,1] such that liminf, o v, < 1 and let {0,} be a nonnegative real sequence such that lim,_,~ 6, = 0. For
a given point u € E, generate a sequence {x,} by the following iterative scheme: Cy = Dy = C, x1 € Dy,
and

Yn(N) = T NanJzy + (1 — ay)JTaxy,) for each X € A,

Chy1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
AEA

Dpy1={yeCp:V(y,u) <V(Ilg,  ,u,u)+ o},
Tn+1 € Dpyr

foralln € N. If I — T\ is closed at zero for each A € A, then {x,} converges strongly to Ilpu.

Proof. We first show that, for each n € N, C,, is closed and convex, satisfies F' C C,, and D,, is nonempty.
It is clear that C7 and Dy satisfy these condition. Thus, we can take 1 € D1 = C. Suppose that, for some
k € N, C}, is closed and convex, satisfies F' C Cj, and Dy, is nonempty. Using Lemma 3.5 as ¢ = xp, D = C},
M = Cyy1, we see that Cgqq is closed and convex, and satisfies F' C Cgyq. Thus, Ilg, v exists. Since
0 > 0, we have

V(g u,u) <V(Ic,,  u,u) + 6.

Because I, ,,u € Cgy1 C Cy, it follows that I, ,u € Dyy1. Hence Dgyq is nonempty. By induction, we
see that, for each n € N, (), is closed and convex, satisfies F' C C,, and D,, is nonempty. Hence {z,} is
well-defined.

Since C, includes F' # ) for all n € N, {C},} is a sequence of nonempty closed convex subsets and, by
definition, it is decreasing with respect to inclusion. Let 7, := II¢, u for all n € N and put Cp := ﬂzozl Ch.
Then it follows that

U] 75 FcCy= M—liTILIlCn.

By Theorem 2.6, we obtain that {m,} converges strongly to mop = II¢,u. Since xp41 € Dpy1 C C), for each
n € N, we obtain
V(mn,u) < V(eps1,u) < V(mper,u) + oy

for each n € N. Since 7, — 7 and J,, — 0, we have
V(mp,u) = lim V(mp,u) < liminf V(x,41,u)
n—oo n—oo

< limsup V(zn41,u)

n—o0

< lim {V(mpt1,u) + 0n} = V(mo, w).

n—oo

Therefore, we get lim, o0 V(2p,u) = V(mp,u). We also obtain that {z,} is bounded. Let {z,,} be a
subsequence of {x,} such that {x,,} converges weakly to z¢ € C. Since z,, € Cy,_1 for each i € N\{1}, we
see that

To € W—I;ZS Cp, = M_hTEH C, = Cy.

Thus, by the weak lower semicontinuity of the norm, we obtain
V(zo,u) = ||zo* — 2(z0, Ju) + |Jul?
< Timinf {[[an, |2 — 2, Ju) + u]2}
11— 00

= liminf V(z,,,u) = lim V(z,,u) = V(m,u).
71— 00 n—o0
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From the uniqueness of IT¢,u, we have xy = my. So, {x,} converges weakly to my. Using the properties of
V', we have )
}||xn|| — H7TO|H < V(xn,m) = V(zn,u) — V(ng,u) — 2(x, — w0, Jmo — Ju).

Therefore, it follows from V(zp,u) — V(m,u) and z, — 7w that {||z,||} converges to ||mo|. Since E has
the Kadec-Klee property, {x,} converges strongly to 7.

Fix A € A arbitrarily. It follows from V (7o, yn (X)) < V (7o, zy,) for each n € N that {Jy,,(\)} is bounded.
Hence, by the assumption that liminf, ,~ oy, < 1, we may take subsequences {ay,} of {ay} and {Jyn,(N\)}
of {Jyn(A)} such that lim; o ap; = ap with 0 < ag < 1 and {Jyy, (A)} converges weakly to a point y§ € E*.
By Lemma 3.3, {Th\zy,} converges strongly to myg. Therefore, {z,, — Thxy,} converges strongly to 0. For
each A € A, since I — T), is closed at zero, it follows that mop € F(T)) and hence mp € F. From Lemma 2.4,
we obtain Ilc,u = I pu. O

We present three results below that are derived from Theorem 5.1. Each result is closely related to the
previous work. The first is the shrinking projection method proposed in [20]; see also [12].

Theorem 5.2. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C' be a nonempty closed convex subset of E and let {T\ : A € A} be a
family of self-mappings on C such that ) # F := MyxeaF(T)) C A := MxepA(Ty). Let {an} be a sequence
in [0,1] such that iminf, o a, < 1. For a given point u € E, generate a sequence {x,} by the following
iterative scheme: C1 = C, x1 € Cy, and

Yn(\) = J N anJzy + (1 — a)JThay) for each \ € A,
Cp+1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
AEA
Tn41 = Cn+1u
for allm € N. If I — T is closed at zero for each X\ € A, then {z,} converges strongly to IIpu.

Proof. In the Theorem 5.1, Ilc, , ,u is always chosen as xy,41 from D, ;1. As a direct consequence of Theo-
rem 5.1, the sequence {x,} converges strongly to IIru. O

The following two results correspond to the methods studied in [9] and [21], respectively.

Theorem 5.3. Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C' be a nonempty closed convex subset of E and let {T\ : A € A} be a
family of self-mappings on C such that ) # F := MxeaF(T\) C A := MxepaA(T)). Let {a,} be a sequence in
[0, 1] such that liminf, o v, < 1 and let {0,} be a nonnegative real sequence such that lim,_,~ 6, = 0. For
a given point u € E, generate a sequence {x,} by the following iterative scheme: C; = K1 = C, 1 € Kj,
and

Un(N) = J HanJzn + (1 — an)JTazy,) for each X € A,

Cp+1 = {z € Cp:supV (z,yn(N)) < V(z,xn)} ,
A€A

Kn1 ={y € Cpy1:V(y,u) < V(Illg,,  u,u)+d,},
Tp+1 € Knpta
foralln € N. If I — T\ is closed at zero for each A € A, then {x,} converges strongly to Il pu.
Proof. Let {D,,} be as in Theorem 5.1. Since C,,41 C C), for each n € N, it follows that
Kpy1 CDppa

for each n € N. Because each C,, is nonempty, closed, and convex for each n € N, we see that Il¢, ,u € K 1.
Hence, K, +1 is nonempty for each n € N. In Theorem 5.1, by choosing x,+1 € Kp+1 C Dyy1, it follows as
a direct consequence that {x,} converges strongly to IIu. O
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Theorem 5.4. Let E be a reflexive and strictly conver Banach space having a Fréchet differentiable norm
and the Kadec-Klee property. Let C be a nonempty closed convex subset of E and let {Ty : A € A} be a
family of self-mappings on C' such that ) # F := NxeaF(Ty) C A := NxeaA(T)). Let {an,} be a sequence
in [0,1] such that liminf, . oy, < 1. For a given point u € E, generate a sequence {x,} by the following
iterative scheme: C1 = L1 =C, ©1 € L1, and

Yn(\) = J Ny + (1 — ) JTzy,) for each \ € A,
Gt = {2 € CuswpV () £ V) ).

A€A
Lyy1 ={y e Cn:V(y,u) < Vg, u,u)},

Tnt1 € Lt
for allm € N. If I — T is closed at zero for each X\ € A, then {x,} converges strongly to IIpu.

Proof. Let {0,} and {D,,} be as in Theorem 5.1. Since {4, } is nonnegative real sequence, it follows that
Lpt1 C Dy

for each n € N. Because each (), is nonempty, closed, and convex, and Cpy; C C),, for each n € N,
we see that Ilg, ,u € Lypy1. Therefore, L, 1 is nonempty for each n € N. In Theorem 5.1, by taking
Tnt1 € Lpt1 C Dyy1, it follows that {x,} converges strongly to Ilpu. O

6. Deduced results

In this section, we present results deduced from the main theorems. We first state the common assump-
tions used throughout this section.

Let E be a reflexive and strictly convex Banach space having a Fréchet differentiable norm and the
Kadec-Klee property, let C' be a nonempty closed convex subset of E and let {T) : A € A} be a family of
self-mappings on C such that F' := NyepaF(T)) # 0. Let {a,} be a sequence in [0,1] and let {d,} be a
nonnegative real sequence.

We consider the iterative schemes given in Theorems 4.1 and 5.1. First, let {z,,} be the sequence generated
byue E,Cy=Dy=C, 1 € D1, and

yn(A) = I HanJxn + (1 — ay)JThxy) for each X € A,
Cpy1 = {2 € Cp:supV (z,yn(N)) < V(z,xn)} )
AEA

Dpii={yeCp:llu—y|| <lu-— PCn+lu|| +0n},
In+1 € Dn+1

for each n € N. Next, let {z,,} be the sequence generated by u € E, C; = D; = C, x; € Dy, and
Yn(\) = J HanJz, + (1 — o) JTaxy) for each A € A,
Cunr = {52 GV (V) < Vi) },
AEA

Dyt = {y €Cy: V(ya u) < V(ch+1uau) + 571}7
Tnt1 € Dy

for each n € N.

Finally, recalling the discussion in Section 3, we obtain the following results as direct consequences of
Theorems 4.1 and 5.1.

Theorem 6.1. Let {T) : A € A} be a family of relatively nonexpansive self-mappings on C such that F :=
MxeaF(Ty) # 0. Suppose that {x,} is the sequence generated by (3), iminf,, o @, < 1 and limy,_ §, = 0.
Then {xy} converges strongly to Pru.
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Theorem 6.2. Let {T) : A € A} be a family of relatively nonexpansive self-mappings on C such that F :=
MxeaF(Ty) # 0. Suppose that {x,} is the sequence generated by (4), iminf,, o @, < 1 and limy,_ §, = 0.
Then {xy} converges strongly to Ilpu.

Theorem 6.3. Let {T : A € A} be a family of nonspreading self-mappings on C' such that F' := Nxea F(Ty) #
(0. Suppose that {x,} is the sequence generated by (3), liminf, ooy < 1 and lim, o0 6, = 0. Then {x,}
converges strongly to Pru.

Theorem 6.4. Let {T : A € A} be a family of nonspreading self-mappings on C' such that F' := Nxea F(Ty) #
(0. Suppose that {x,} is the sequence generated by (4), liminf, oo < 1 and lim,_yo0 6, = 0. Then {x,}
converges strongly to Ilpu.

Theorem 6.5. Let {T) : A € A} be a family of mappings of type (Q) from C' into itself such that F :

S

MxeaF(Ty) # 0. Suppose that {x,} is the sequence generated by (3), iminf,, o v, < 1 and limy, o 6, =
Then {xy,} converges strongly to Pru.

Theorem 6.6. Let {T) : A € A} be a family of mappings of type (Q) from C into itself such that F :=
MxeaF(Ty) # 0. Suppose that {xy} is the sequence generated by (4), iminf,, o @, < 1 and lim,_ §, = 0.

Then {x,} converges strongly to Ilpu.

7. Conclusion

In this paper, we proposed a new shrinking projection method for finding common fixed points of a
family of nonlinear mappings in Banach spaces, utilizing two types of nonlinear projections (Theorems 4.1
and 5.1). Our approach allows for errors in the nonlinear projection values at each iteration, which may lie
either inside or outside the target set. This method integrates key ideas from Kimura [9] and Takeuchi [21].

Kimura’s method [9], which was introduced in a geodesic space, deals with cases where the error sequence
does not necessarily converge to zero. Later, Kimura [10] studied a related problem in a Banach space. Our
work is also studied in a Banach space, but our method is designed for situations in which the error sequence
does converge to zero. Consequently, our approach requires weaker assumptions on the underlying space (see
Theorems 4.4 and 5.3).

Takeuchi’s method [21] requires that each new point in the sequence differs from the previous one, which
leads to two possible cases for the procedure: either stopping or continuing. By removing this requirement,
our method considers only the case where the procedure continues (Theorems 4.5 and 5.4).

Our results are not a full extension of Kimura [9] and Takeuchi [21], but rather a partial extension of
both. Unlike both works, our approach is motivated by the goal of weakening the assumptions of the theorem
and simplifying the theorem’s conclusion.
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