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Abstract

We introduce a new notion of quasi-Ptolemaic space and find the relations between quasi-Ptolemaic spaces
and b-metric spaces. We prove that each b-metric space is quasi-Ptolemaic and prove that quasimobius
mappings send quasi-Ptolemaic spaces to quasi-Ptolemaic spaces.

Keywords: Self-affine set, fractal interpolation function, self-similar zipper, Jordan arc
2010 MSC: 54E25, 54E35

1. Introduction

A semimetric space is called Ptolemaic if for each quadruple x1, x2, x3, x4 a semimetric d satisfies Ptolemy’s
inequality [3, 5, 7, 8, 9]

d(x1, x2)d(x3, x4) + d(x1, x3)d(x2, x4) ≥ d(x1, x4)d(x2, x3).

A metric space is not necessarily Ptolemaic and a semimetric Ptolemaic space is not necessarily metric. The
ptolemaic characteristic [7] of a quadruple x1, x2, x3, x4 in (X, d) is

β(x1, x2, x3, x4) =
d(x1, x2)d(x3, x4) + d(x1, x3)d(x2, x4)

d(x1, x4)d(x2, x3)
.

The inequality β(x1, x2, x3, x4) ≥ 1 is true for any x1, x2, x3, x4 in the Ptolemaic space (X, d).
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A semimetric quadruple x1, x2, x3, x4 is Ptolemaic, if and only if the determinant

C(x1, x2, x3, x4) =
∣∣d(xi, xj)∣∣2

is negative or zero, where i, j ∈ {x1, x2, x3, x4} [2].
In this article, we try to find the relations between quasi-Ptolemaic (Definition 3.1) spaces and b-metric

spaces. Quasi-Ptolemaic spaces are a new type of topological space, and there are no results yet on quasi-
Ptolemaic spaces.

The main question is whether a semimetric space is quasi-Ptolemaic, if it is a b-metric space? Theorem
3.4, proved in the third section, allows us to give a positive answer to this question. According to this

theorem, every b-metric space with parameter k ≥ 1 is also quasi-Ptolemaic with parameter 1 > ε ≥ 1− 1

2k2
.

However, there is no such relationship in the opposite direction. The quasi-Ptolemaic property of a
semimetric space does not imply that it is b-metric. We prove this with the Example 3.5. In this example,
we construct a semimetric space that satisfies Ptolemy’s inequality and is not a b-metric for any value of the
parameter k.

Theorem 4.1 proves that in any quasi-Ptolemaic Möbius structure M with parameter ε ∈ (0, 1) in the

set X there is a bounded b-metric with parameter k =
1

1− ε
, which is Möbius equivalent to the original

semimetrics. Theorem 5.1 proves that for a linear homeomorphism η = kt, where t ∈ [0,+∞), k = const > 0
any η-quasimöbius map f maps a quasi-Ptolemaic semimetric space with parameter ε ∈ (0, 1) into a quasi-

Ptolemaic semimetric space with parameter 1− 1− ε

k
.

2. b-metric spaces

Let X be a set, and let d : X × X −→ R+ be a mapping that satisfies the following axioms for each
x, y ∈ X:

I. d(x, y) ≥ 0, and d(x, y) = 0 ⇔ x = y;
II. d(x, y) = d(y, x).

Then we call the pair (X, d) a semimetric space and d is called a semimetric [9] . However, if a semimetric
d in X satisfies the following for each x, y, z ∈ X:

III. d(x, y) ≤ d(x, z) + d(z, y),
then we call the pair (X, d) a metric space and d a metric in X. The axiom (III) is called a triangle inequality.

Definition 2.1. [1]. A semimetric space (X, d) is said to be b-metric space (or quasi-metric space) if there
exists k ≥ 1 such that for each x, y, z ∈ X,

d(x, y) ≤ k[d(x, z) + d(z, y)]. (1)

In the definition of b-metric space we can see that if k = 1 then (X, d) is a metric space. We mention an
example for a b-metric space.

Example 2.2. Let (X,d) be a metric space, α > 1, β > 1, λ > 0, µ > 0. Consider the function L(x, y) =
λd(x, y)α + µd(x, y)β for all x, y ∈ X. L(x, y) is not always a metric, but it is a b-metric with the parametr
k = max{2α−1, 2β−1}. To show this, it helps us that for any a, b > 0 and γ > 1(

a+ b

2

)γ

≤ aγ + bγ

2
, (2)

and this in turn follows from the fact that the real valued function x → xβ is convex. Using (2) we obtain
that,

L(x, y) = λd(x, y)α + µd(x, y)β ≤

≤ λ
(
d(x, z) + d(z, y)

)α
+µ

(
d(x, z) + d(z, y)

)β≤
≤ 2α−1λ

(
d(x, z)α + d(z, y)α

)
+2β−1µ

(
d(x, z)β + d(z, y)β

)
≤

≤ max{2α−1, 2β−1} ·
(
L(x, z) + L(z, y)

)
.
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3. Quasi-Ptolemaic spaces

We begin this section with the following example. Suppose that the set consists of four points, that is,
X = {x1, x2, x3, x4}. Let metric d on X satisfied these equalities, d(x1, x2) = d(x3, x4) = s, d(x2, x3) =
d(x1, x4) = t, d(x1, x3) = d(x2, x4) = s+ t, where s and t are positive real numbers, and so (X, d) is called a
pseudolinear quadripole [5]. Since (s + t)2 > s2 + t2, pseudolinear quadripoles are not Ptolemaic. However,
for any ε ∈ [1/2, 1) we can write that:

s2 + t2 ≥ (1− ε)(s+ t)2.

This example motivated us to define a new type of spaces.

Definition 3.1. A semimetric space (X, d) is called quasi-Ptolemaic if there exists ε ∈ (0, 1) such that, for
each quadruple x1, x2, x3, x4 ∈ X the semimetric d satisfies,

d(x1, x2)d(x3, x4) + d(x1, x3)d(x2, x4) ≥ (1− ε)d(x1, x4)d(x2, x3). (3)

It is true for the quasi-Ptolemaic space that β(x1, x2, x3, x4) ≥ 1−ε, where ε ∈ (0, 1). From this definition
one can see that, if the space is quasi-Ptolemaic with parameter ε0, that is, if (3) is satisfied for different
four points, then for all ε ∈ [ε0, 1) (3) is satisfied. If (3) holds for all ε ∈ (0, 1), then the space (X, d) is
Ptolemaic.

The following question may arise from the definition of quasi-Ptolemaic space: Is there a semimetric that
does not satisfy the condition of Ptolemaic and quasi-Ptolemaic spaces? The following example shows we
can find a non quasi-Ptolemaic semimetric space.

Example 3.2. (Not quasi-Ptolemaic space.) Let X = {xn}∞n=1 sequence be a semimetric space with semi-
metric d(xi, xj), such that

d(xi, xj) =


max{i, j}−1/2, if i = 1 or j = 1;
0, if xi = xj ;
|i− j|−1, otherwise.

Then for sequence of points x1, x2, x3, xn (n ≥ 4), we obtain that

1

β(x1, x2, x3, xn)
−→ ∞

for n −→ ∞. This means that for a sufficiently large n the quasi-Ptolemaic inequality does not hold.

In [4] one can see that in the metric Ptolemaic space (X, d) the metric ρ(x, y) = d(x, y)α is Ptolemaic
for α ∈ (0, 1]. If α > 1, then the semimetric is not a metric but is a b-metric with k = 2α−1. The following
theorem holds for this b-metric:

Theorem 3.3. Let the metric space (X, d) be Ptolemaic. Then the b-metric space (X, ρ) is quasi-Ptolemaic

with ε = 1− 1

2α−1
, where ρ(x, y) = d(x, y)α and α > 1.

Proof. Let x1, x2, x3, x4 ∈ X be different points and dij = d(xi, xj), with i, j ∈ {1, 2, 3, 4}, i ̸= j. Since
(X, d) is Ptolemaic, we have

d12 · d34 ≤ d13 · d24 + d14 · d23 (4)

Using (4) and (2) we obtain

dα12 · dα34 ≤
(
d13 · d24 + d14 · d23

)α≤ 2α−1(dα13 · dα24 + dα14 · dα23)

for α > 1. In this case ε can be chosen as 1− 1

2α−1
. Thus, (X, ρ) is quasi-Ptolemaic for α > 1.
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If a semimetric space is b-metric, then it will be quasi-Ptolemaic. This can be seen in the following
theorem.

Theorem 3.4. Let (X, d) be a b-metric space with k ≥ 1. Then (X, d) is quasi-Ptolemaic with ε ∈ [1 −
1/(2k2), 1).

Proof. Let x1, x2, x3, x4 ∈ X be different points. Since d is b-metric,

d(x1, x2) ≤ k[d(x1, x3) + d(x3, x2)],

d(x3, x4) ≤ k[d(x3, x2) + d(x2, x4)].

It follows from the validity of

max
i,j,l,m∈{1,2,3,4},m ̸=l

{
d(xi, xj)

d(xl, xm)

}
≥ 1

for the points x1, x2, x3, x4 that

d(x1, x2)d(x3, x4) ≤ k2
(
d(x1, x3)d(x2, x4)

(
d(x2, x3)

d(x2, x4)
+ 1

)
+

+d(x1, x4)d(x2, x3)

(
d(x2, x3)

d(x1, x4)
+

d(x2, x4)

d(x1, x4)

))
≤

≤ 2k2 max
i,j,l,m∈{1,2,3,4},m̸=l

{
d(xi, xj)

d(xl, xm)

}
(d(x1, x3)d(x2, x3) + d(x1, x4)d(x2, x3)).

To find ε ∈ (0, 1) we solve the following equation:

1

1− ε
= 2k2 max

i,j,l,m∈{1,2,3,4},m ̸=l

{
d(xi, xj)

d(xl, xm)

}
.

From this equality we can say the following:

1

2k2(1− ε)
= max

i,j,l,m∈{1,2,3,4},m ̸=l

{
d(xi, xj)

d(xl, xm)

}
≥ 1,

then we obtain ε ≥ 1− 1

2k2
.

However, if the semimetric space (X, d) is quasi-Ptolemaic, then we cannot say that it is b-metric. It can
be seen in the next example:

Example 3.5. (A Ptolemaic semimetric space that is not b-metric for any k.) Let X = {i,−i,± 1

n
} be a

semimetric space with semimetric

d(x, y) =



1, if x = i, y = −i

0, if x = y,
2

mn
, if x = ± 1

m
, y = ± 1

n
,

1

n
, if x = ±i, y = ± 1

n
,

where n,m — natural numbers. Since for an arbitrary sequence of three points x = i, y = −i and zn =
1

n
there is a n0 number such that for all n ≥ n0 (n ∈ N) the coefficient of the b-metric must be greater than
n/2, that is, k >

n

2
. This means that this space is not b-metric. But this space is Ptolemaic. To check this,
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we need to consider the following options:

1) Let x = i, y = −i, z = ± 1

n
and t = ± 1

m
. Then

d(x, y) = 1, d(z, t) =
2

mn
,

d(x, t) = d(t, y) =
1

m
, d(x, z) = d(y, z) =

1

n
.

So d(x, y)d(z, t) = d(x, t)d(y, z) + d(x, z)d(t, y).

2) Let x = ± 1

m
, y = ± 1

n
, z = ±1

l
and t = ±1

s
. Then

d(x, y) =
2

mn
, d(x, t) =

2

ms
, d(x, z) =

2

ml
,

d(t, z) =
2

sl
, d(y, z) =

2

nl
, d(y, t) =

2

ns
.

So d(x, y)d(z, t) ≤ d(x, t)d(y, z) + d(x, z)d(t, y).

3) Let x = ±i, y = ± 1

m
, z = ±1

l
and t = ±1

s
. Then

d(x, y) =
1

m
, d(x, t) =

1

s
, d(x, z) =

1

l
,

d(z, t) =
2

sl
, d(y, z) =

2

lm
, d(y, t) =

2

sm
.

And so d(x, y)d(z, t) ≤ d(x, t)d(y, z) + d(x, z)d(t, y).

4. Quasi-Ptolemaic space on Möbius structures

Let T = (x1, x2, x3, x4) be four different points in the semimetric space (X, d). We call the absolute
cross-ratio of T ,

abs(T ) = abs(x1, x2, x3, x4) =
d(x1, x3) · d(x2, x4)
d(x1, x2) · d(x3, x4)

.

Let us have two semimetrics d(x, y) and d′(x, y) on X (x, y ∈ X) containing at least four pairwise distinct
points. They are called Möbius equivalent [6] [9] if for any four pairwise different points x1, x2, x3, x4 ∈ X

d(x1, x2) · d(x3, x4)
d(x1, x3) · d(x2, x4)

=
d′(x1, x2) · d′(x3, x4)
d′(x1, x3) · d′(x2, x4)

.

In particular, for any positive real function f in X the semimetrics d(x, y) and d′(x, y) =
d′(x, y)

(f(x) · f(y))
are

Möbius equivalent.
The set of all pairwise Möbius equivalent semimetrics d(x, y) is called a Möbius structure [6] [9], in the

set X. A Möbius structure M on X is called Ptolemaic (quasi-Ptolemaic) if there exists a semimetric d(x, y)
from M that is, Ptolemaic (quasi -Ptolemaic).

Theorem 4.1. In any quasi-Ptolemaic Möbius structure M with parameter ε ∈ (0, 1) on the set X there is

a bounded b-metric with parameter k =
1

1− ε
.

More precisely: for any pair of distinct points a ̸= b in X and for any semimetric d ∈ M the semimetric

D(x, y) =
(1− ε) · d(x, y) · d(a, b)

(d(x, a) + d(x, b)) · (d(y, a) + d(y, b))
(5)

is a b-metric with parameter k =
1

1− ε
on X. Moreover, D(x, y) ∈ M and D(x, y) ≤ 1.
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Proof. Let d(x, y) ∈ M be quasi-Ptolemaic with ε ∈ (0, 1) on X. The semimetric D(x, y) is Möbius equivalent
to d(x, y). Since (X, d) is quasi-Ptolemaic, we obtain the following relation for a semimetric d(x, y):

(d(x, a) + d(x, b)) · (d(y, a) + d(y, b)) ≥ d(x, a) · d(y, b) + d(x, b) · d(y, a) ≥

≥ (1− ε) · d(x, y) · d(a, b).

From this relation we obtain next:

D(x, y) ≤ (1− ε) · d(x, y) · d(a, b)
(1− ε) · d(x, y) · d(a, b)

= 1.

And this is prove the boundedness of the semimetric D(x, y).
Let f(x) = d(x, a) + d(x, b). Then

D(x, y) +D(y, z)

D(x, z)
=

(1− ε) · d(x, y) · d(a, b)
f(x) · f(y)

· f(x) · f(z)
(1− ε) · d(x, z) · d(a, b)

+

+
(1− ε) · d(y, z) · d(a, b)

f(y) · f(z)
· f(x) · f(z)
(1− ε) · d(x, z)d(a, b)

=

=
d(x, y) · f(z) + d(y, z) · f(x)

d(x, z) · f(y)
.

By virtue of the quasi-Ptolemaic inequality

d(x, y) · f(z) + d(y, z) · f(x) = [d(x, y) · d(z, a) + d(y, z) · d(x, a)]+

+[d(x, y) · d(z, b) + d(y, z) · d(x, b)] ≥

≥ (1− ε) · [d(x, z) · d(y, a) + d(x, z) · d(y, b)] = (1− ε) · d(x, z) · f(y)

and consequently
D(x, y) +D(y, z)

D(x, z)
≥ (1− ε) · d(x, z) · f(y)

d(x, z) · f(y)
= 1− ε.

or equivalently

D(x, z) ≤ 1

1− ε
·
(
D(x, y) +D(y, z)

)
,

it can be shown that the semimetric D(x, y) is a b-metric with parameter k =
1

1− ε
.

One thing we can say from the theorem 4.1 is that, using the semimetric considered in Example 3.2,
we can construct a semimetric of the form given in (5). This semimetric is the metric, and is the Möbius
equivalent of the Ptolemaic semimetric considered in Example 3.2.

5. Quasimöbius mappings of Ptolemaic spaces

Let η : [0,∞) −→ [0,∞) be a homeo-morphism of [0,∞) onto itself. An injective mapping f : X −→ Y in
semimetric spaces (X, d) and (Y, ρ) is called η-quasimöbius [7] [9], if the estimate abs(f(T )) ≤ η(abs(T )) holds
for any T = (x1, x2, x3, x4) in X. In particular, f : X −→ Y is a möbius mapping if abs(f(T )) = η(abs(T ))

for each T in X. Since abs(T ) = abs(x1, x2, x3, x4) =
1

abs(x1, x3, x2, x4)
, we obtain that

(
η

(
1

abs(T )

))−1

≤ abs(f(T )) ≤ η(abs(T )). (6)
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Theorem 5.1. Let η = kt, where t ∈ [0,+∞), k = const > 0. Then every η-quasimöbius mapping f maps
the quasi-Ptolemaic semimetric space X with parameter ε ∈ (0, 1) to the quasi-Ptolemaic semimetric space

Y with parameter 1− 1− ε

k
.

Proof. Since X is quasi-Ptolemaic with the parameter ε ∈ (0, 1) for any pairwise distinct points x1, x2, x3, x4 ∈
X, using the formula (6) we obtain that

1− ε

k
≤ 1

η

(
1

abs(x1, x2, x3, x4)

) +
1

η

(
1

abs(x1, x2, x4, x3)

) =

=
1

k

(
abs(x1, x2, x3, x4) + abs(x1, x2, x4, x3)

)
≤

≤ abs(f(x1, x2, x3, x4)) + abs(f(x1, x2, x4, x3)) =

= abs(y1, y2, y3, y4) + abs(y1, y2, y4, y3).

Or equivalently,

1−
(
1− 1− ε

k

)
≤ abs(y1, y2, y3, y4) + abs(y1, y2, y4, y3),

where y1, y2, y3, y4 ∈ Y and yi = f(xi), i ∈ {1, 2, 3, 4}.
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