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Abstract

In this manuscript, the dynamical behavior of an HIV-1 infection model with logistic target cell growth and
two major transmissions will be studied. Functional response and saturation response are nonlinear in the
model. The positivity and boundedness of the solutions will be proven. The reproduction number will be
computed as the sum of reproduction numbers determined by any method of disease transmission. It will
be shown that the infection-free equilibrium is globally asymptotically stable if the reproduction number is
less than one and if it is more than one, then the infection-free equilibrium is unstable. We find that within
certain conditions, positive equilibrium is locally asymptotically stable and the Hopf bifurcation can occur.
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1. Introduction

The Human Immunodeficiency Virus (HIV) seeks to destroy cells in the body, the most important of which
is a type of white blood cells called alpha. The immune system of the body weakens after the virus enters at
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a rate determined by the stage of the disease. By weakening the immune system, it becomes vulnerable to
a variety of infections, and this process eventually leads to Acquired Immune Deficiency Syndrome (AIDS),
which is the last stage of the disease. The virus is located in the body fluids of infected people and can be
transmitted through these fluids ([1]). AIDS is one of the major causes of death, with about one million
people dying from this disease each year. ([5]).

In the acute HIV infection (AHI) stage, activated CD4+ T cells become infected with HIV. HIV-specific
CD8+ T cells kill most of these infected cells or they are destroyed for cytopathic effects of the virus,
or their immune contraction. After AHI, HIV-infected cells survive and convert to resting memory T cells.
Their survival is guaranteed by homeostatic reproduction without active virus manufacture or antigen-driven
enlargement. HIV-specific CD8+ T cells cannot detect and kill resting CD4+ T cells because they are silent
and have no viral proteins expression ([15]). The rate of HIV infection progression is determined by the
number of CD4+ T cells and this number in healthy people is at level between 800 and 1200 mm−3 ([17]).
It is well discovered that HIV has a lengthy incubation and infectious period ([2]).

Using nonlinear ordinary differential equations (ODEs), various mathematical models have been devel-
oped to explain how the disease has spread among human populations. These models help us to understand,
analysis, control and improve our insights of the disease. The first attempt to explain mathematical model for
HIV infection has been introduced in [10] and [7]. Recentally, he Authores in [4], [6] and [12] have considered
some HIV models and investigated the stability of the models

Xu in [18] introduced a mathematical model for HIV-1 infection with saturation infection rate. Also,
Considering saturated CTL response and separate transmission incidences, Carvalho and Pinto investigated
an HIV-1 infection model ([3]).

Lai and Zou in [8] investigated the dynamical analysis of HIV by model

dT (t)

dt
= rT (t)(1− T (t) + αT ∗(t)

TM
)− β1T (t)V (t)− β2T (t)T

∗(t),

dT ∗(t)

dt
= β1T (t)V (t) + β2T (t)T

∗(t)− dT ∗T ∗(t),

dV (t)

dt
= γT ∗(t)− dV V (t),

(1.1)

where target cells are susceptible CD4+ T cells and T (t), T ∗(t) and V (t) illustrate the target cells, pro-
ductively infected T cells and virus particles at time t, respectively. β1T (t)V (t) and β2T (t)T

∗(t) represent
the rate at which target cells become infected by viral particles and productively infected cells, respectively.
Infected cells produce viral particles at rate γT ∗(t). The death rate of target cells, productively infected
cells and viruses are dTT (t), dT∩aT ∗(t) and dV V (t), respectively. The carrying capacity of target cells, TM

is a bound for target cells growth rate, r. The constant α represents the limitation of infected cells imposed
on the cell growth of target cells, in general α ≥ 1 ([8]). Two response functions, representing two modes of
spread of HIV, has been considered in this model.

Model (1.1) contains a logistic target cell growth and two simple linear response functions. However,
in real world infection rate presumably is not linear. Therefore, it is reasonable for us to assume that the
infection rate of system is given by saturated infection βTV

1+aT where a is positive constant. In this manuscript
the same notations as in [8] are used to consider the model:

dT (t)

dt
= rT (t)(1− T (t) + αT ∗(t)

TM
)− β1T (t)V (t)

1 + aT (t)
− β2T (t)T

∗(t)

1 + aT (t)
,

dT ∗(t)

dt
=

β1T (t)V (t)

1 + aT (t)
+

β2T (t)T
∗(t)

1 + aT (t)
− dT ∗T ∗(t),

dV (t)

dt
= γT ∗(t)− dV V (t),

(1.2)

in which β1T (t)V (t)
1+aT (t) and β2T (t)T ∗(t)

1+aT (t) are saturation responses of the infection rate that show the rate of infection
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target cells, by free viral particles and infectious cells, respectively. Parameters and variables of system (1.2)
are presented in Table 1. The paper is organized as follows: positivity and boundedness of solutions of system

Table 1: Parameters and Variables.
T concentrations of susceptible CD4+ T cells at time t
T ∗ concentrations of susceptible productively infected T cells at time t
V concentrations of susceptible free virus particles at time t
r target cell growth rate
α limitation of infected cells imposed on the cell growth of target cells,
TM carrying capacity of target cells
a positive constant or zero
γT ∗(t) rate of release of free viral particles by infected cells at time t
dT∗T ∗(t) losing rate of productively infected cells
dV V (t) losing rate of free viruses
β1,β2 positive constants that describe the infection rate from each other population

(1.2) considered in section 2. Local stability of equilibria and the basic reproduction number is described in
section 3. Section 4 deals with persistence of infection of system (1.2). Section 5 is devoted to studying the
dynamical behavior of the positive equilibrium and Hopf bifurcation. The paper ends with a discussion in
section 6.

2. Positivity and boundedness of solutions

In this section the positivity and boundedness of the solutions of system (1.2) with the initial conditions

T (0) = T0 > 0, T ∗(0) = T ∗
0 > 0, V (0) = V0 > 0, T0 + T ∗

0 ≤ TM (2.1)

will be considered.
It is easy to show that the functions in the right-hand side of (1.2) satisfy the Lipschitz condition. Next,

the fundamental existence-uniqueness theorem in [11] can be used to prove the existence and uniqueness of
solutions of system (1.2) with the initial conditions (2.1).

Theorem 2.1. The solution of system (1.2) with initial conditions (2.1) is positive and bounded.

Proof. Suppose that (T (t), T ∗(t), V (t)) be the solution of system (1.2) satisfying the initial conditions (2.1).
We show that

0 < T (t) ≤ TM , 0 < T ∗(t) ≤ TM , 0 < V (t) ≤ V (0) +
γTM

dV

for all t ≥ 0. Moreover, T (t) + T ∗(t) ≤ TM for all t ≥ 0.
We prove the theorem by contradiction. Let ti, i ∈ {1, 2, 3} as the first time that T (t), T ∗(t), V (t) vanish,

respectively; and t0 = min{t1, t2, t3}.
First, suppose that T (t1) = 0, T ∗(t1) > 0, V (t1) > 0, i.e. t0 = t1, t0 ̸= t2 and t0 ̸= t3. Hence, T (t), T ∗(t)

and V (t) are positive for all t ∈ [0, t1). From the two first equations in (2.1) it is easy to see that

d

dt
[T (t) + T ∗(t)] = rT (t)(1− T (t) + αT ∗(t)

TM
)− dT ∗T ∗(t), ∀t ∈ [0, t1]. (2.2)

Now, using the method of [8], rescale (2.2) by

u(t) =
T (t)

TM
, w(t) =

T ∗(t)

TM
, t̃ = dT ∗t,

r

dT ∗
= δ. (2.3)
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From (2.2) and (2.3) for all t ∈ [0, t1] it can be concluded that

d

dt
[u(t) + w(t)] = δu(t)[1− u(t)− αw(t)]− w(t)

= δu(t)[1− (u(t) + w(t))]− δ(α− 1)w(t)u(t)− w(t).
(2.4)

Now for any t∗ ∈ [0, t1] satisfying u(t∗) + w(t∗) = 1 we have

d

dt
[u(t) + w(t)]t=t∗ = −δ(α− 1)u(t∗)w(t∗)− w(t∗) ≤ −w(t∗) < 0.

Therefore, u(t) + w(t) ≤ 1 for all t ∈ [0, t1]. This means that T (t) + T ∗(t) ≤ TM for all t ∈ [0, t1]. Thus,
T (t) ≤ TM and T ∗(t) ≤ TM for t ∈ [0, t1].

It follows from the third equation in (1.2) that

dV

dt
≤ γTM − dV V.

Hence,

V (t) ≤ V (0)e−dV t +
γTM

dV
− e−dV tγTM

dV
≤ V (0)e−dV t +

γTM

dV
, t ∈ [0, t1]. (2.5)

Again it follows from the first equation in (1.2) that for all t ∈ [0, t1],

dT (t)

dt
≥ −[

β1V (t)

1 + aT (t)
+ (

β2
1 + aT (t)

+
rα

TM
)T ∗(t)]T (t) ≥ −[β1V (t) + (β2 +

rα

TM
)T ∗(t)]T (t).

Thus, for all t ∈ [0, t1],

T (t) ≥ T (0)e
−

∫ t
0 −[β1V (s)+(β2+

rα
TM

)T ∗(s)]ds
. (2.6)

From (2.5) and (2.6) it can be written that,

T (t1) ≥ T (0)e
−

∫ t1
0 −[β1[V (0)e−dV t+

γTM
dV

]+(β2+
rα
TM

)T ∗(s)]ds
> 0,

this is an obvious contradiction with T (t1) = 0.
Now let T ∗(t2) = 0, T (t2) ≥ 0, V (t2) ≥ 0, and for t ∈ [0, t2), T (t), T ∗(t), V (t) > 0. It follows from (1.2)

that

dT ∗(t)

dt
≥ −dT ∗T ∗(t).

Thus,

T ∗(t2) ≥ T ∗(0)e−t2 > 0,

this is impossible given T ∗(t2) = 0.
Now suppose that t0 = t3; and therefore, V (t3) = 0, T (t3) ≥ 0, T ∗(t3) ≥ 0, and for t ∈ [0, t3),

T (t), T ∗(t), V (t) > 0. It follows from the third equation in (1.2) that

dV (t)

dt
≥ −dV V, t ∈ [0, t3].

Thus, V (t3) ≥ V (0)e−dV t3 > 0, this is another contradiction with regard to V (t3) = 0.
These two last cases include the cases of t2 ̸= t1 or t2 ̸= t3 or t1 = t2 ̸= t3 or t2 = t3 ̸= t1 or t1 = t2 = t3

or t3 ̸= t1 or t3 ̸= t2 or t3 = t1 ̸= t2.
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With the obtained contradictions in all cases, it can be concluded that the solution of system (1.2) is
positive for all t ≥ 0.

From (2.2), (2.4), (2.5) and the positivity of the solutions of (1.2) it can be concluded that

T (t) + T ∗(t) ≤ TM , V (t) ≤ V (0) +
γTM

dV
, ∀t ≥ 0,

and this completes the proof.

In the next section the basic reproduction number R0, and trivial, infection-free and positive equilibria
of (1.2) will be identified. The stability of the equilibria will also be considered.

3. Stability of equilibria and the reproduction number

System (1.2) has the trivial equilibrium E0 = (0, 0, 0), the infection-free equilibrium E1 = (TM , 0, 0) and
positive equilibrium Ē = (T̄ , T̄ ∗, V̄ ), where

T̄ =
TM

R0 + (R0 − 1)aTM
,

T̄ ∗ =
rTM (1 + aTM )(R0 − 1)

(αr + ((R0 − 1)aTM +R0)dT ∗)((R0 − 1)aTM +R0)
,

V̄ =
γ

dV
T̄ ∗.

Let p = R0 +R0aTM − aTM and rewrite positive equilibrium as following:

T̄ =
TM

p
, T̄ ∗ =

rTM (p− 1)

(αr + pdT ∗)p
, V̄ =

γ

dV
T̄ ∗.

The basic reproduction number R0 for system (1.2) with saturation response function is given by,

R0 = R01 +R02

where
R01 =

β1TMγ

dV dT ∗(1 + aTM )
, R02 =

β2TM

dT ∗(1 + aTM )
.

Epidemiologically, the reproduction number gives the number of secondary infections that an infected person
produces in a population of susceptible individuals ([9]).

In the other word, it denotes the average number of infected T cells derived from one infected T cell. In
the following, the stability of the equilibria will be considered.

Theorem 3.1. The trivial equilibrium E0 of (1.2) is always unstable.

Proof. Using the linearized system and Jacobian matrix of (1.2), instability of E0 will be proven. The
Jacobian matrix of (1.2) at E0 is given by

J0 =

r 0 0
0 −dT ∗ 0
0 γ −dV

 ,

which has a positive eigenvalue λ = r. Therefore, E0 is always unstable.

Theorem 3.2. If R0 < 1, then the infection-free equilibrium E1 of system (1.2) is locally asymptotically
stable. If R0 > 1, then E1 is unstable.



V. Roomi et al., Lett. Nonlinear Anal. Appl. 1 (2023), 130–141. 135

Proof. Consider the Jacobian matrix of (1.2) at E1,

J1 =

−r −rα− β2TM
1+aTM

− β1TM
1+aTM

0 β2TM
1+aTM

− d∗T
β1TM
1+aTM

0 γ −dV

 .

It is clear that it has a negative eigenvalue, λ1 = −r < 0. The other eigenvalues of J1 are the roots of
characteristic equation of matrix

J10 =

[
β2TM
1+aTM

− d∗T
β1TM
1+aTM

γ −dV

]
which is given by:

λ2 + (dV + dT ∗ − β2TMdV
(1 + aTM )

)λ+ (dV dT ∗ − β2TMdV
1 + aTM

− β1TMγ

1 + aTM
) = 0.

Let

a1 = dV + dT ∗ − β2TMdV
(1 + aTM )

= dV + dT ∗(1−R02),

a2 = dV dT ∗ − β2TMdV
1 + aTM

− β1TMγ

1 + aTM
= dV dT ∗ − β2TMdV + β1TMγ

1 + aTM
= dV dT ∗(1−R0).

If R0 < 1, then a1 > 0 and a2 > 0. Therefore, all eigenvalues have negative real parts. If R0 > 1, then
a2 < 0 and J10 has at least one positive eigenvalue and this implies instability of E1.

Theorem 3.3. The infection-free equilibrium E1 of (1.2) is globally asymptotically stable if R0 < 1.

proof. Consider a linear cooperative system that is given by,

dT̄ ∗(t)

dt
= β1V̄ (t) + β2T̄

∗(t)− dT ∗ T̄ ∗(t),

dV̄ (t)

dt
= γT̄ ∗(t)− dV V̄ (t).

(3.1)

Suppose that for K > 0, (T̄ ∗(t), V̄ (t)) = Keλ0tϵ0 be a solution of system (3.1), that λ0 is principal eigenvalue
associated with strictly positive eigenvector ε0. It is easy to see that

(T ∗(0), V (0)) ≤ (T̄ ∗(0), V̄ (0)).

In fact, T (t) ≤ TM for all t ≥ 0, and

dT ∗(t)

dt
≤ β1V (t) + β2T

∗(t)− dT ∗T ∗(t),

dV (t)

dt
≤ γT ∗(t)− dV V (t).

Thus, by the comparison principal, for all t ≥ 0, it can be concluded that

(T ∗(t), V (t)) ≤ Keλ0tε0. (3.2)

On the other hand, we see that if R0 < 1, then all eigenvalues have negative real parts. Thus, λ0 < 0 and
from (3.2) it can be concluded that

lim
t→+∞

T ∗(t) = 0, lim
t→+∞

V (t) = 0.
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Applying the above results, suggest the equation

dT̄ (t)

dt
= rT̄ (t)(1− T̄ (t)

TM
).

Therefore,

T̄ (t) =
erT̄ (t)TM

erT̄ (t) + cTM

.

Thus, limt→+∞ T̄ (t) = TM . It follows from Corollary 4.3 in [16] that, limt→+∞ T (t) = TM . Therefore,
limt→+∞(T, T ∗, V ) = (TM , 0, 0) and this completes the proof.

Now we introduce a set and in the next section, it will be shown that this is the invariant set for the
solution semiflow of (1.2). From (2.5) it can be seen that

V (t) ≤ e−dV t(V0 −
γTM

dV
) +

γTM

dV
.

Therefore, if V (0) ≤ γTM
dV , then V (t) ≤ γTM

dV for all t ≥ 0. Hence, consider the following set.

Y :=
{
(T, T ∗, V ) ∈ R3, T ≥ 0, T ∗ ≥ 0, V ≥ 0, T + T ∗ ≤ TM , V ≤ γTM

dV

}
.

4. Persistence of infection

In this section the persistence of the infection will be considered. For this purpose, suppose that T0 ̸= 0.
If T0 = 0, then the system cannot be persistence, because the unique solution of (1.2)-(2.1) for t > 0 is given
by,

T (t) = 0, T ∗(t) = T ∗
0 e

−dT∗ , V (t) = e−dV [V0 + T ∗
0

∫ t

0
e(dV −dT∗ )sds].

It is clear that T (t) → 0 and V (t) → 0, as t → +∞.
Applying Theorem 1.3.2 in [20], the uniformly persistence of the infection can be proven. First, consider

the following two lemmas.

Lemma 4.1. Let ϕt is the solution semiflow defined by (1.2) and suppose that X, X0, ∂X0 and M∂, is given
by

X := {(T, T ∗, V ) ∈ R3|T > 0, T ∗ ≥ 0, V ≥ 0, T + T ∗ ≤ TM , V ≤ γTM

dV
},

X0 := {(T, T ∗, V ) ∈ X| T ∗ ≥ 0 and V ≥ 0},

∂X0 := X \X0 = {(T, T ∗, V ) ∈ X|T ∗ = 0 or V = 0}

and
M∂ := {(T0, T

∗
0 , V0)|ϕt(T0, T

∗
0 , V0) ∈ ∂X0, t ≥ 0}.

Then,
(a) ϕt(X) ⊂ X and ϕt(X0) ⊂ X0, for all t ≥ 0,
(b) M∂ = {(T̂ , 0, 0)|0 < T̂ ≤ TM}.

Proof. Let (T0, T
∗
0 , V0) ∈ X. The different cases of T ∗

0 and V0 will be considered.
(i) If T ∗

0 = 0 and V0 = 0 then,

T (t) =
ertTMT0

T0ert + (TM − T0)
> 0, T ∗(t) = 0, V (t) = 0. ∀t ≥ 0 (4.1)
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(ii) If T ∗
0 = 0 and V0 > 0 then,

d

dt
T ∗(0) =

β1T (0)V (0)

1 + aT (0)
=

β1T0V0

1 + aT0
> 0.

It is clear that if there exists ε > 0 that t ∈ (0, ε), then T ∗(t) > 0. By the same way of the proof of
Theorem 2.1, it can be concluded that T (t) > 0, T ∗(t) > 0 and V (t) > 0.

(iii) If T ∗(0) > 0 and V0 = 0, then

d

dt
V (0) = γT ∗(0) = γT ∗

0 > 0.

Similarly it can be seen that T (t) > 0, T ∗(t) > 0 and V (t) > 0.
(iv) If T ∗

0 > 0 and V0 > 0, then it follows from Theorem 2.1 that T (t) > 0, T ∗(t) > 0 and V (t) > 0. This
completes the proof of (a).

Now let (T0, T
∗
0 , V0) ∈ M∂ . From the definition of M∂ , it can be concluded that ϕt(T0, T

∗
0 , V0) ∈ ∂X0.

Hence, only case (i) can happen. That is T ∗
0 = 0 and V0 = 0, and this completes the proof of (b).

In the following it can be considered persistence of infection of system (1.2) for some η0 > 0.

Lemma 4.2. The infection-free equilibrium E1 is isolated invariant set for R0 > 1.

Proof. E1 is an equilibrium of (1.2); and therefore, it is an invariant set. Now it is sufficient to show that
the solution (T (t), T ∗(t), V (t)) of (1.2) with initial value (T0, T

∗
0 , V0) ∈ X satisfies

lim sup
t→∞

||(T (t), T ∗(t), V (t))− (TM , 0, 0)|| ≥ η0.

Suppose that for the solution with initial value (T0, T
∗
0 , V0) ∈ X,

lim sup
t→∞

||(T (t), T ∗(t), V (t))− (TM , 0, 0)|| < η0.

Therefore, there exists t0 > 0 such that for t ≥ t0,

T (t) > TM − η0, T ∗(t) < η0, V (t) < η0.

Using this inequality and putting β1

1+aTM
= ζ1 and β2

1+aTM
= ζ2, rewrite the second equation in (1.2) as

follows:

dT ∗(t)

dt
=

β1T (t)V (t)

1 + aT (t)
+

β2T (t)T
∗(t)

1 + aT (t)
− dT ∗T ∗(t) > ζ1T (t)V (t) + ζ2T (t)T

∗(t)− dT ∗T ∗

> ζ1(TM − η0)V (t) + ζ2(TM − η0)T
∗(t)− dT ∗T ∗.

From this inequality and the third equation of (1.2), the system;

dT̄ ∗(t)

dt
= ζ1(TM − η0)V̄ (t) + ζ2(TM − η0)T̄

∗(t)− dT ∗T ∗,

dV̄ (t)

dt
= γT ∗(t)− dV V̄ (t)

(4.2)

can be introduced.
On the other hand, it can be seen that all elements of J10 are non-negative except for those on the main

diagonal. Therefore, it is a quasi-positive matrix. Using the notation in [13], let λ0(TM ) = max{Re(λ)|λ ∈
σ(J10)} as principal eigenvalue of J10 where σ(J10) is the set of eigenvalues of matrix J10.

Suppose that λ0(TM − η0) and (ϵ1, ϵ2)
T are the principal eigenvalue and the associated strictly positive

eigenvector of (1.2). The solution of (4.2) is given by
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(T̄ ∗, V̄ )T = eλ0(TM−η0)t(ϵ1, ϵ2)
T .

Since T ∗(t0) and V (t0) are positive, there is a ξ > 0 such that (T ∗(t0), V (t0))
T ≥ ξ(T̄ ∗(t0), V̄ (t0))

T . There-
fore,

(T ∗(t), V (t))T ≥ ζeλ0(TM−η0)t(ϵ1, ϵ2)
T , ∀t ≥ t0. (4.3)

If R0 > 1, then λ0(TM − η0) > 0 for some η0 > 0. Therefore, T ∗(t) and V (t) are unbounded and this
contradiction completes the proof.

From [14] we know that the no-cycle condition is a fundamental assumption in the theory of persistence.
Remember that if M chains to M , then this chain is called a cycle and if M = (TM , 0, 0), then there is no
cycle in M∂ from M to M . We know from [20] that a function g : X → X is uniformly persistent with
respect to (X0, ∂X0) if there exists ϵ > 0 such that lim infn→∞ d(gn(x), ∂X0) ≥ ϵ.

Theorem 4.3. For system (1.2) the infection is uniformly persistent with respect to (X0, ∂X0), when R0 > 1.

Proof. First, define a continuous function p : X → R+ by

p(x) = min{T ∗
0 , V0}, ∀x = (T0, T

∗
0 , V0) ∈ X.

It is easy to see that p is a generalized distance function for the semiflow ϕt : X → X (see [8]). It follows from
Lemma 4.1 that X0 is positively invariant for the solution semiflow ϕt defined by (1.2). We know that ϕt is
compact and point dissipative; that is, if there is a bounded set B in X, then B attracts each point (compact
set) in X. Theorem 1.1.3. in [20] says that if f : X → X is compact and point dissipative, then there is a
connected global attractor A that attracts each bounded set in X. Hence, there is a global attractor A for ϕt.
On the other hand, Lemma 4.1 implies that M∂ is an invariant set in ∂X0 which is maximal and compact.
Let M = (TM , 0, 0). Since the equilibria are invariant sets, M is a nonempty invariant set, and from Lemma
4.2, M is an isolated invariant set in X. Next, if W s(M) := {x ∈ X : limt→∞ d(ϕt(x),M) = 0} be the stable
set of M , then from the definition of X0 and Lemma 4.2, it can be concluded that W s(M) ∩X0 = ∅.

On the other hand, the omega limit set is defined by ω(x) = ∩t≥0∪s≥tϕs(x) and it is clear that no subset
of M forms a cycle in M∂ . Therefore, from (4.1) it can be concluded that ∪x∈M∂

ω(x) = {M}.
Now by Theorem 1.3.2 in [20] it is easy to see that there exists an η > 0 such that

min
x∈ω(y)

p(x) > η, ∀y ∈ X0.

Therefore,
lim inf
t→∞

T ∗(t) ≥ η, lim inf
t→∞

V (t) ≥ η.

This completes the proof.

5. Positive equilibrium and Hopf bifurcation

In this section, dynamical behavior and stability of the positive equilibrium Ē will be considered. The
Jacobian matrix of (1.2) at Ē = (T̄ , T̄ ∗, V̄ ) is given by,

J̄ =


rTM−2rT̄−αrT̄ ∗

TM
− β1V̄+β2T̄ ∗

(1+aT̄ )2
−αrT̄

TM
− β2T̄

1+aT̄
− β1T̄

1+aT̄
β1V̄+β2T̄ ∗

(1+aT̄ )2
β2T̄
1+aT̄

− dT ∗
β1T̄
1+aT̄

0 γ −dV

 .
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Now, rescale J̄ by,

x =
β2T̄

1 + aT̄
=

β2TM

p+ aTM
,

y =
β1V̄ + β2T̄ ∗

(1 + aT̄ )2
=

r(R0 − 1)pdT ∗

R0(αr + pdT ∗)
=

rp(p− 1)dT ∗

(p+ aTM)(αr + pdT ∗)
,

z =
rTM − 2rT̄ − αrT̄ ∗

TM
=

rp− 2r

p
− αr2(p− 1)

p(αr + pdT ∗)
,

x
′
=

β1T̄

1 + aT̄
=

β1TM

p+ aTM
,

z
′
=

αrT̄

TM
=

αr

p
.

Therefore,

J̄ =

z − y −z
′ − x −x

′

y x− dT ∗ x
′

0 γ −dV

 .

The corresponding characteristic equation is

λ3 + a1λ
2 + a2λ+ a3 = 0, (5.1)

where

a1 = dT ∗ + dV + y − x− z,

a2 = dV dT ∗ − xdV + ydT ∗ + ydV − zdV − zdT ∗ + xz − x
′
γ + yz

′
,

a3 = yz
′
dV + ydV dT ∗ − zdV dT ∗ + x

′
γz + xzdV ,

a1a2 − a3 = d2V dT ∗ + dV d
2
T ∗ + 2ydV dT ∗ + y2dV + y2dT ∗ + yd2T ∗ + yd2V

+ z2dT ∗ + z2dV + 2xzdV + 2xzdT ∗ + xyz + x
′
γx+ yz

′
dT ∗

+ y2z
′
+ x2dV − 2xdV dT ∗ − xd2V − 2xydV − xydT ∗ − 2zydV

− 2zydT ∗ − 2zdV dT ∗ − x2z − xz2 − zd2T ∗ − zd2V − x
′
γdV − x

′
γdT ∗ − x

′
γy − xyz

′ − zyz
′
.

By Routh-Hurwitz criterion, a necessary and sufficient condition that all roots of (5.1) have negative real
parts is, a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3.

If y = x+ z, then

rpdT ∗(p− 1)

(p+ aTM )(αr + pdT ∗)
+

αr2(p− 1)

p(αr + pdT ∗)
=

β2pTM + r(p− 2)(p+ aTM )

p(p+ aTM )
.

Therefore,

rp2dT ∗(p− 1) + αr2(p− 1)(p+ aTM ) = (αr + pdT ∗)(β2pTM + r(p− 2)(p+ aTM )). (5.2)

Since the left hand side of (5.2) is positive, p > 2 or β2pTM ≥ r(p − 2)(p + aTM ). The first one is
a sufficient condition for the right-hand side to be positive. Therefore, it is necessary but not sufficient
condition for y = x+ z.

Theorem 5.1. Suppose that
(i) R0 > 1,
(ii) y = x+ z.

Then, Ē = (T̄ , T̄ ∗, V̄ ) is locally asymptotically stable.
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Proof. If R0 > 1, then p = R0 + R0aTM − aTM > 0; as a result, x > 0, y > 0, x
′
> 0 and z

′
> 0. On the

other hand, it is easy to see that dT ∗ > x and dT ∗dV ≥ x
′
γ. In fact, from R0 = R01+R02, it will be observed

that R0 =
R0x

′
γ

dT∗dV
+ R0x

dT∗ . Hence, from the result above and y = x+ z, it can be concluded that,
a1 > 0, a2 > 0, a3 > 0, and a1a2 > a3,

and this completes the proof.
We see that if R0 > 1 and y = x+ z, then Ē is locally asymptotically stable. Let

p∗ = (β∗
1 , β

∗
2 , d

∗
T ∗ , d∗V , γ

∗, T ∗
M , α∗, a∗, r∗)

and rewrite a1(p
∗)a2(p

∗)− a3(p
∗) as F (p∗)G(p∗), where

F (p∗) =
1

p2(p+ aTM )2(αr + pdT ∗)2

and

G(p∗) =p2(p+ aTM )2(αr + pdT ∗)2dV dT ∗(dV + dT ∗)

+ rp3(p− 1)dV d
2
T ∗(rp(p− 1) + 2(αr + pdT ∗)(p+ aTM ))

+ p2(αr + pdT ∗)2(β2TM )2dV + r2p3(p− 1)2d2T ∗(αr + p)

+ 2p(αr + pdT ∗)(p+ aTM )(β2TM )((rp− 2r)(αr + pdT ∗)− αr2(p− 1))(dV + dT ∗)

+ (p+ aTM )2((rp− 2r)2(αr + pdT ∗)2 − α2r4(p− 1)2)(dV + dT ∗)

+ rp(p− 1)p2(p+ aTM )(αr + pdT ∗)dT ∗(d2V + d2T ∗)

+ p(β2TM )(rp(p− 1)dT ∗)((rp− 2r)(αr + pdT ∗)− αr2(p− 1))

+ (αr + pdT ∗)2p2(β1β2T
2
Mγ) + p(p+ aTM )(αr + pdT ∗)r2pα(p− 1)d2T ∗

− (p+ aTM )(αr + pdT ∗)2p2β2TMdV (2dT ∗ + dV )

− (αr + pdT ∗)p2β2TMrp(p− 1)dT ∗(2dV + dT ∗)

− 2(p+ aTM )rp2(p− 1)dT ∗((rp− 2r)(αr + pdT ∗)− αr2(p− 1))(dV + dT ∗)

− (p+ aTM )2(αr + pdT ∗)p((rp− 2r)(αr + pdT ∗)− αr2(p− 1))(dV + dT ∗)2

− (αr + pdT ∗)p(β2TM )2((rp− 2r)(αr + pdT ∗)− αr2(p− 1))

− (p+ aTM )(β2TM )((rp− 2r)2(αr + pdT ∗)2 − α2r4(p− 1)2)

− (p+ aTM )(αr + pdT ∗)2p2β1TMγ(dV + dT ∗)

− (αr + pdT ∗)pβ1TMγrp(p− 1)dT ∗ − (αr + pdT ∗)p2β2TMαr2(p− 1)dT ∗

− (p+ aTM )p((rp− 2r)(αr + pdT ∗)− αr2(p− 1))αr2(p− 1)dT ∗ .

Suppose that there is a p̄∗ > 0 such that G(p̄∗) = 0. Hence, a1(p
∗)a2(p

∗) − a3(p
∗) = 0. It can be

concluded from Theorem 2 in [19] that, there is Hopf bifurcation at Ē and roots of characteristic equation
(5.1) are λ∗

1 = −a1(p̄∗) and λ∗
2,3 = ±i

√
a2(p̄∗). We choose one parameter as bifurcation parameter and fixed

other parameters from p∗. Then, consider the Hopf bifurcation at Ē. For example let β∗
2 is a bifurcation

parameter and G(p̄∗) is a function of β̄∗
2 . If β1TMγ = (1 +

√
1 + αr

d∗T
+ aTM )dT ∗dV and let β̄∗

2 = 0, then

G(β∗
2) = G(0) > 0. On the other hand, limβ̄∗

2→+∞G(β̄∗
2) = −∞. Hence, G(β̄2

∗
) = 0 has at least one positive

root. Therefore, if there is a critical β̄∗
2 > 0 with above conditions, then a Hopf bifurcation occurs at Ē

while β∗
2 changes near β̄∗

2 . Again by choosing β∗
1 as bifurcation parameter, different Hopf bifurcation will be

observed.

6. Conclusion and discussion

In this paper, based on a previously published paper by Lai and Zou ([8]), we have described and analyzed
an HIV-1 dynamics model with two infection rates that are concerned with the cell-to-cell transfer, cell-free
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virus spread and saturation response of the infection rate. The existence, positivity and boundedness of
solutions of the system (1.2) with initial conditions (2.1) have been proven. The reproduction number
has been computed as the sum of basic reproduction numbers determined by cell-to-cell and cell-free virus
transmission. It has been shown that the trivial equilibrium of the system is always unstable and the
infection-free equilibrium is locally and globally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.
For the case R0 > 1, a solution space is defined to investigate the uniformly persistence of the system.
Establishing some conditions, we could show that if R0 > 1, then the positive equilibrium is stable and Hopf
bifurcations occur.
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