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Abstract

We found that many metric fixed point theorems hold for orbitally complete quasi-metric spaces. In order
to show this, we obtain several basic principles extending the Banach contraction principle and new fixed
point theorems for the Rus-Hicks-Rhoades maps with a large number of their consequences. Moreover, we
improve theorems on mappings with contractive conditions with some auxiliary functions and on mappings
with asymptotically regularity. Consequently, a large number of known metric fixed point theorems are
extended with almost trivial short proofs.
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1. Introduction

A Rus-Hicks-Rhoades (RHR) map f : X → X on a quasi-metric space (X, δ) is the one satisfying

δ(fx, f2x) ≤ α δ(x, fx) for all x ∈ X

with a given α ∈ [0, 1).
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Recently we obtained metric fixed point theorems on the RHR maps with a large number of its conse-
quences; see [1]–[6]. Since then we have found further related literature on the maps. In the present paper,
we want to add up further applications of our RHR theorem and related results as a supplement of [6].
Consequently, a large number of metric fixed point theorems for complete metric spaces are known to hold
for orbitally complete quasi-metric spaces.

The present article is organized as follows:
In Section 2, we introduce the Rus-Hicks-Rhoades Contraction Principle (Theorem P) as a proper gen-

eralization of the Banach Contraction Principle for quasi-metric spaces. Section 3 devotes many historically
well-known consequences of Theorem P or the RHR Contraction Principle with short and clear proofs.

The various contractions have been extended with the aid of some auxiliary functions, for example,
comparison functions, control functions, gauge functions, simulation functions, etc. In Section 4, we collect
fixed point theorems for contractive type maps with some auxiliary functions. We also show that such results
can be extended to generalized RHR maps.

Section 5 devotes to the Ćirić-Proinov-Górnicki type maps having the asymptotical regularity. For any
quasi-metric fixed point theorem, if we add the asymptotical regularity to the subject map, then its conclusion
is definitely strengthened.

In Section 6, we give some comments on a problem raised by Billy E. Rhoades [7] in 1977 with its solution
by S.-S. Chang [8] in 1986. Actually, we give a trivial answer to the problem.

Finally, Section 7 devotes some historical remarks on the subject of the present article. We recall our
study on the RHR maps and the motivation of the present article. Finally, we suggest some conclusion in
order to improve the metric fixed point theory.

2. The Rus-Hicks-Rhoades Contraction Principle

For quasi-metric spaces (X, δ), simply δ is not symmetric. For details on them, we follow Jleli-Samet [9],
Alsulami et al. [10] and Park [1]–[6].

Definition. The orbit of a selfmap T : X → X at x ∈ X is the set O(x, T ) = {Tnx : n = 0, 1, 2, . . . }. The
space X is said to be T -orbitally complete if every (right)-Cauchy sequence in O(x, T ) is convergent in X. A
selfmap T of X is said to be T -orbitally continuous at x0 ∈ X if

lim
n→∞

Tn(x) = x0 =⇒ lim
n→∞

Tn+1(x) = T (x0)

for any x ∈ X.

The following in Park [1], [4], [6] is called the Rus-Hicks-Rhoades (RHR) Contraction Principle:

Theorem P. Let (X, δ) be a quasi-metric space and let T : X → X be an RHR map; that is,

δ(T (x), T 2(x)) ≤ α δ(x, T (x)) for every x ∈ X,

where 0 ≤ α < 1.

(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X such that

lim
n→∞

Tn(x) = x0

and
δ(Tn(x), x0) ≤

αn

1− α
δ(x, T (x)), n = 1, 2, · · · ,

δ(Tn(x), x0) ≤
α

1− α
δ(Tn−1(x), Tn(x)), n = 1, 2, · · · .

(ii) x0 is a fixed point of T , and, equivalently,
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(iii) T : X → X is orbitally continuous at x0 ∈ X.

This was proved in [6] by analyzing a typical proof of the Banach Contraction Principle given by Art
Kirk ([11], Theorem 2.2).

For the condition: there exists 0 < α < 1 such that d(T (x), T 2(x)) ≤ α · d(x, T (x)), for all x ∈ X, we
meet the following names: graphic contraction, iterative contraction, weakly contraction, Banach mapping,
etc.

Moreover, the following consequence of Theorem P in Park [6] extends the usual Banach Contraction
Principle:

Theorem Q. Let (X, δ) be a quasi-metric space and let T : X → X be an improved Banach contraction,
that is, for each x ∈ X, there exists a y ∈ X such that

δ(T (x), T (y)) ≤ α δ(x, y) where 0 ≤ α < 1.

(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X such that

lim
n→∞

Tn(x) = x0

and
δ(Tn(x), x0) ≤

αn

1− α
δ(x, T (x)), n = 1, 2, · · · ,

δ(Tn(x), x0) ≤
α

1− α
δ(Tn−1(x), Tn(x)), n = 1, 2, · · · .

(ii) x0 is the unique fixed point of T (equivalently, T : X → X is orbitally continuous at x0 ∈ X).

The Banach Contraction Principle appeared in thousands of publications should be corrected as in The-
orem Q.

Some of the most general metric fixed point theorems in 1970’s were given in Park [12].

3. Various Examples of RHR maps

We began our study on RHR maps in [1] and [4]. Later we found a large number of examples of RHR
maps in [5], [6], where we showed that most of such metric fixed point theorems can be extended or improved.
Especially, they include many theorems influenced by Suzuki [13] in 2008 and others.

In this section, we introduce many known consequences of Theorem P or the RHR Contraction Principle
with short and clear proofs. Some incorrect theorems are improved.

From now on the numbers attached to Theorems, Corollaries, Definitions, etc. are same to the one in the
original sources.

Kannan [14] in 1968

The following improves Kannan’s fixed point theorem (see Górnicki [60]):

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a mapping such that there exists
K < 1/2 satisfying

d(Tx, Ty) ≤ K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X.

Then, T has a unique fixed point v ∈ X, and for any x ∈ X the sequence of iterates {Tnx} converges to v
and d(Tn+1x, v) ≤ K · ( K

1−K )n · d(x, Tx), n = 0, 1, 2, . . . .

Comment. This is a simple consequence of Theorem P and the uniqueness follows from the contractive
condition. Therefore the Kannan theorem holds for T -orbitally complete quasi-metric spaces.
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Reich [15] in 1971

Theorem 3. Let X be a complete metric space with metric d, and let T : X → X be a function with the
following property:

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, y), x, y ∈ X,

where a, b, c are nonnegative and satisfy a+ b+ c < 1. Then T has a unique fixed point v ∈ X, and for any
x ∈ X the sequence of iterates {Tnx} converges to v.

Comment. Note that
d(Tx, T 2x) ≤ a+ c

1− b
d(x, Tx), 0 ≤ a+ c

1− b
< 1.

Hence Theorem 3 is a simple consequence of Theorem P and it holds for T -orbitally complete quasi-metric
spaces.

Hardy and Rogers [16] in 1973

The following theorem is the principal result of this paper [16]:

Theorem 1. Let (M,d) be a metric space and T a self-mapping of M satisfying the condition

(1) for x, y ∈M , d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),

where a, b, c, e, f are nonnegative and we set α = a+ b+ c+ e+ f. Then

(a) If M is complete and α < l, T has a unique fixed point.
(b) If (1) is modified to the condition

(1′) x ̸= y implies d(Tx, Ty) < ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),

and in this case we assume M is compact, T is continuous and α = l, then T has a unique fixed point.

The conclusion in part (b) is a limiting version of the theorem contained in part (a), and Edelstein
obtained this result in 1962 for the case α = f = 1.

Comments. Since a metric is symmetric, by exchanging x and y in the Hardy-Rogers contractive condition,
we have c = e. Moreover, the condition for y = Tx implies

d(Tx, T 2x) ≤ ad(x, Tx) + bd(Tx, T 2x) + cd(x, T 2x) + ed(Tx, Tx) + fd(x, Tx)

and hence
d(Tx, T 2x) ≤ a+ c+ f

1− b− c
d(x, Tx) where 0 ≤ a+ c+ f

1− b− c
< 1.

Then Theorem 1 follows from Theorem P for orbitally complete metric spaces.

Ćirić [17] in 1974

Theorem. Let T be an orbitally continuous self-map on the T-orbitally complete standard metric space
(X, d). If there is k ∈ [0, 1) such that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y)

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈N converges to a fixed point of T.

Comment. For y = Tx, we have

min{d(Tx, T 2x), d(x, Tx)} ≤ kd(x, Tx) or d(Tx, T 2x) ≤ kd(x, Tx).

Therefore, Theorem P for T -orbitally complete quasi-metric spaces can be applicable.

Ćirić [18] in 1974
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Definition. A mapping T : M → M of a metric space M is said to be a generalized contraction iff for
every x, y ∈M there exist nonnegative numbers q, r, s and t, which may depend on both x and y, such that
sup{q + r + s+ 2t : x, y ∈M} < 1 and

d(Tx, Ty) ≤ q · d(x, y) + r · d(x, Tx) + s · d(y, Ty) + t · [d(x, Ty) + d(y, Tx)].

This is comparable to the following:

Definition. A mapping T :M →M is said to be a quasi-contraction iff there exists a number q, 0 < q < 1,
such that

d(Tx, Ty) ≤ q ·max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

holds for every x, y ∈M .

Now we can state the main result:

Theorem 1. Let T be a quasi-contraction on a metric space M and let M be T-orbitally complete. Then

(a) T has a unique fixed point u in M,
(b) limTnx = u, and
(c) d(Tnx, u) ≤ (qn/(1− q))d(x, Tx) for every x ∈M .

Comments. (1) If M is a quasi-metric space and T is a generalized contraction, for y = Tx, we have

d(Tx, T 2x) ≤ q · d(x, Tx) + r · d(x, Tx) + s · d(Tx, T 2x) + t · [d(x, T 2x)],

d(Tx, T 2x) ≤ q+r+t
1−s−td(x, Tx) and 0 ≤ q+r+t

1−s−t < 1.

Then Theorem P can be applied for orbitally complete quasi-metric spaces.

(2) If M is a quasi-metric space and q < 1/2, then Theorem 1 is a simple consequence of our Theorem
P. In fact, for y = Tx, we have

d(Tx, T 2x) ≤ q ·max{d(x, Tx), d(x, T 2x)} ≤ q · {d(x, Tx) + d(Tx, T 2x)}

=⇒ d(Tx, T 2x) ≤ q
1−qd(x, Tx), 0 ≤ q

1−q < 1.

Then Theorem 1 holds for orbitally complete quasi-metric spaces when q < 1/2. In our previous work [6] we
stated that T is not an RHR map when q < 1.

(3) Theorem 1 holds under the following slightly stronger condition:

d(Tx, Ty) ≤ q ·max{d(x, y), d(x, Tx), d(y, Ty), 1
2
d(x, Ty), d(y, Tx)}.

(4) It may be observed that a quasi-contraction T does not require the continuity for the existence of the
fixed point. However, a quasi-contraction T turns out to be orbitally continuous at the fixed point. This
follows from Theorem P(iii).

Subrahmanyam [19] in 1974

Let S be a subset of a Banach space. It may be recalled that f : S → S is said to be a Banach operator
of type k on S if there exists a constant k, 0 ≤ k < 1 such that

||f(x)− f2(x)|| ≤ k||x− f(x)||.

From the author’s previous work,

Corollary 2. A continuous Banach operator mapping a closed subset of a Banach space into itself has a
fixed point.



S.Park, Lett. Nonlinear Anal. Appl. 2 (2024), 35–61 40

Comment. This is one of the origins of the RHR maps and follows from our Theorem P.

Dass and Gupta [20] in 1975

Theorem. Let (X, d) be a complete metric space and T : X → X a mapping such that there exists α, β > 0
with α+ β < 1 satisfying

d(Tx, Ty) ≤ α
d(y, Ty)(1 + d(x, Tx))

1 + d(x, y)
+ βd(x, y) ∀x, y ∈ X.

Then T has a unique fixed point.

Comment. For y = Tx, the contractive condition reduces to

d(Tx, T 2x) ≤ β

1− α
d(x, Tx) with 0 <

β

1− α
< 1.

Then Theorem P works for T -orbitally complete quasi-metric spaces.
Note that this is an example of extremely artificial one.

Jaggi [21] in 1977

Theorem. Let T be a continuous self map defined on a complete metric space (X, d). Suppose that T
satisfies the following contractive condition:

d(Tx, Ty) ≤ α[
d(x, Tx)d(y, Ty)

d(x, y)
] + β(d(x, y)

for all x, y ∈ X, x ̸= y and for some α, β ∈ [0, 1) with α+ β < 1. Then T has a unique fixed point in X.

Comment. For x ̸= y = Tx, we have

d(Tx, T 2x) ≤ αd(Tx, T 2x) + β(d(x, Tx) or d(Tx, T 2x) ≤ β

1− α
(d(x, Tx).

Since 0 ≤ β
1−α < 1, we can apply Theorem P for T -orbitally complete quasi-metric spaces.

Billy E. Rhodes [7] in 1977

In this historical article, Billy listed the basic 25 conditions all of them are RHR maps except

(6), (10), (13), (22), (24), and (25).

Each of them implies as follows:

(6), (10), (22): d(fx, f2x) < d(x, fx)
(13): d(fx, f2x) < d(x, f2x)
(24): Ćirić [18]
(25): d(fx, f2x) < max{d(x, fx), d(x, f2x)}, x ̸= fx

Therefore, the other 19 conditions are applicable to our Theorem P for f -orbitally complete quasi-metric
spaces. Most of such results appears in the present article.

Rhoades [22] in 1978-79

Rhoades proved a fixed point result in Banach spaces for single-valued nonself mapping satisfying the
following contraction condition:

d(Tx, Ty) ≤ λmax{d(x, y), d(x, Tx)
2

, d(y, Ty),
d(x, Ty) + d(y, Tx)

1 + 2λ
}
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for all x, y, where 0 < λ < 1.

Comment. This was given as an example of the class of mappings large enough to include some discontinuous
mappings.

For y = Tx, the condition reduces to

d(Tx, T 2x) ≤ λmax{d(x, Tx), 1

1 + 2λ
d(x, Ty)}.

Case 1. If the maximum is d(x, Tx), then T is an RHR map.
Case 2. Otherwise, we have

d(Tx, T 2x) ≤ λ

1 + 2λ
[d(x, Tx) + d(Tx, T 2x)]

and hence
d(Tx, T 2x) ≤ λ

1 + λ
d(x, Tx) ≤ λd(x, Tx)

with 0 < λ < 1. Then T is an RHR map.

Therefore we can apply Theorem P for T -orbitally complete quasi-metric spaces.

Hicks and Rhoades [23] in 1979

Let (X, d) be a complete metric space, T a selfmap of X, and O(x) := {x, Tx, T 2x, . . . }.

Theorem HR. [23] Let 0 < h < 1. Suppose there exists an x in X such that

d(Ty, T 2y) < hd(y, Ty) for each y ∈ O(x).

Then

(i) limn T
nx = z exists, and

(ii) d(Tnx, z) < hn

1−hd(x, Tx).
(iii) z is a fixed point of T if and only if G(x) := d(x, Tx) is T-orbitally lower semi-continuous at z.

Comments. Instead of O(x), we may assume (X, d) is a T -orbitally complete quasi-metric space. A
particular form of Theorem HR was cited Jachymski [24] in 2003, and it was the incorrect base of our [1].

Pachpatte [25] in 1979

Theorem. Let T be an orbitally continuous self-map on the T-orbitally complete standard metric space
(X, d). Suppose that there exists k ∈ [0, 1) such that

m(x, y)− n(x, y) ≤ kd(x, Tx)d(y, Ty), for all x, y ∈ X,

where
m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},

n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

with R(x, y) = min{d(x, Tx), d(y, Ty)} ̸= 0. Then, for each x0 ∈ X the sequence {Tnx0}n∈N converges to a
fixed point of T.

Comments. For y = Tx, we have

m(x, Tx) = d(Tx, T 2x)min{d(Tx, T 2x), d(x, Tx)} and n(x, Tx) = 0.

Hence
m(x, Tx) ≤ kd(x, Tx)d(Tx, T 2x).
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If Tx = T 2x, then Tx is a fixed point. If Tx ̸= T 2x, then we have d(Tx, T 2x) ≤ kd(x, Tx) and we can apply
Theorem P for quasi-metric spaces.

Here R(x, y) = min{d(x, Tx), d(y, Ty)} ≠ 0 seems to be useless and Theorem is definitely artificial.

Park [26] in 1980

Let f be a selfmap of a topological space X. The orbit O(x) of x ∈ X under f is defined by O(x) =
{x, f(x), f2(x), . . . }. A function G : X → [0,∞) is said to be f -orbitally lower semicontinuous at a point
p ∈ X if, for every x0 ∈ X, xnk

→ p implies G(p) ≤ lim infkG(xnk
), where {xnk

} is a subsequence of
{xn}∞n=1, which is defined by xn+1 = f(xn), i.e. {xn}∞n=1 = O(x1).

We showed that any fixed point therem for maps satisfying one of the many contractive conditions in the
list of Rhoades [7] and others follows from the following:

Basic Principle. Let f be a selfmap of a topological space X, and d a nonnegative, real valued function
defined on X ×X such that d(x, y) = d(y, x) and d(x, y) = 0 iff x = y. If there exists a point u ∈ X such
that limn d(f

n+1(u), fn(u)) = 0, and if {fn(u)} has a convergent subsequence with limit p ∈ X, then p is a
fixed point of f iff G(x) = d(x, f(x)) is f-orbitally lower semicontinuous at p.

The following extends the Banach contraction principle:

Theorem 2. Let f be a selfmap of a metric space (X, d). If there exists a point u ∈ X and a λ ∈ [0, 1) such
that O(u) is complete and

d(fx, fy) ≤ λd(x, y) holds for any x, y = fx ∈ O(u),

then {f iu} converges to some ξ ∈ X, and

d(f iu, ξ) ≤ λi

1− λ
d(u, fu) for i ≥ 1.

Further, if f is orbitally continuous at ξ or if

d(fx, fy) ≤ λd(x, y) holds for any x, y ∈ O(u),

then ξ is fixed under f.

Comments. The Basic Principle appears several times in the literature; see also Park and Rhoades [27] in
1980. Theorem 2 is our origin of Theorem P.

Billy E. Rhoades [29] in 2007 stated: These theorems (in Park [26] in 1980) contain as special cases a
number of papers involving contractive conditions not covered by my Transactions paper.

Srivastava [28] in 1995

As an example of an application of Theorem P, not previously published, is the following in [28].

Theorem A. [28], [29] Let T be an orbitally continuous selfmap of a metric space M that is T-orbitally
complete. If T satisfies

[d(Tx, Ty)]3 ≤ c1d(x, y)[d(y, Ty)]
2 + c2d(x, Tx)[d(Tx, Ty)]

2

+c3[d(y, T
2x)[d(Tx, T 2x)]2 + c4d(x, Ty)[d(y, Tx)]

2

for all x, y ∈ M and ci ∈ R such that (c1 + c2)/(1 − c3) = h ∈ (0, 1), then T has a fixed point, which is
unique, when 0 < c4 < 1.

Comments. Set y = Tx to get

[d(Tx, T 2x)]3 ≤ c1 + c2
1− c3

d(x, Tx)[d(Tx, T 2x)]2.
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If x is such that Tx = T 2x, then Tx is a fixed point of T . If not, then we have d(Tx, T 2x) ≤ hd(x, Tx), and
condition of Theorem P is satisfied. Therefore, Theorem A holds for a quasi-metric space.

Kirk and Saliga [30] in 2000

Corollary 2.4. Let M be a complete metric space and suppose T :M →M satisfies:

(i) d(T (x), T 2(x)) ≤ αd(x, T (x)) for some α ∈ (0, 1) and all x ∈M ;
(ii) µ(T (Lc)) ≤ kµ(Lc) for some k < 1 and all c > 0;
(iii) F is an r.g.i. on M.

Then the fixed point set Fix(T ) of T is nonempty and compact. Moreover if {xn} ⊂M satisfies limn d(xn, T (xn)) =
0, then limn dist(xn,Fix(T )) = 0.

Comment. By Theorem P, (i) is enough for the existence of the unique fixed point z ∈ Fix(T ) of T for a
T -orbitally complete quasi-metric space. The conclusion clearly holds.

Berinde [31], [32] in 2003-04

Definition 1. Let (X, d) be a metric space. A map T : X → X is called weak contraction or (δ, L)-
contraction if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx), for all x, y ∈ X.

It is easy to see that condition implies the so called Banach orbital condition

d(Tx, T 2x) ≤ ad(x, Tx), for all x ∈ X,

studied by various authors in the context of fixed point theorems, see for example Kasahara, Hicks and
Rhoades, Ivanov, Rus, and Tasković.

Comment. This is another origin of our RHR maps.

Suzuki [33] in 2005

Suzuki [33] in 2005 and Kikkawa-Suzuki [34] in 2008 gave a list of various classes of maps related τ -
distances on a metric space. It should be noted that all maps in the list are RHR maps whenever τ is a
metric. Moreover, our Theorem P can be extended to τ -distances or possible extensions of them.

Enjouji, Nakanishi and Suzuki [35] in 2005

Let ∆ = {(α, β) : α ≥ 0, β ≥ 0, α+ β < 1} ⊂ R2.
The authors’ Theorem 3.1 can be improved as follows:

Theorem. Define a function ψ : ∆ → [1/2, 1) arbitrary. Let T be a mapping on a complete metric space
(X, d). Assume that there exists (α, β) ∈ ∆ such that

ψ(α, β)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + βd(y, Ty)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover limn T
nx = z holds for every x ∈ X.

Comment. In the original form of Theorem 3.1 in [35], ψ is a particular function. For y = Tx, we have

d(Tx, T 2x) ≤ α

1− β
d(x, Tx) with 0 ≤ α

1− β
< 1.

Therefore Theorem 3.1 follows from Theorem P for orbitally complete quasi-metric spaces. The uniqueness
of fixed point follows from the original contractive condition.
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Suzuki [8] in 2008

Suzuki’s well-known 2008 theorem, which is a generalization of the Banach contraction principle, can be
extended as follows:

Theorem. Let (X, d) be a quasi-metric space, let T : X → X be a map such that X is T-orbitally complete,
and let θ : [0, 1) → (1/2, 1] be any function. Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Then there exists a unique fixed point z of T. Moreover limn T
nx = z for all x ∈ X.

Proof. Since θ(r) ≤ 1, θ(r)d(x, Tx) ≤ d(x, Tx) implies d(Tx, T 2x) ≤ rd(x, Tx) for all x ∈ X. Then we
have the conclusion by Theorem P. □

Comments. According to Theorem P, we can add more conclusion to the above new Theorem. For other
results in [8], we can improve or correct. There have been appeared hundreds of articles influenced by the
original form of the preceding theorem and they can also be improved by following our method.

Kikkawa and Suzuki [34] in 2008

One of such incorrect theorems in [34] can be corrected as follows:

Theorem. Let θ : [0, 1) → (1/2, 1] be any function. For every α ∈ [0, 1), there exist a complete metric space
(X, d) and a mapping T on X such that T has no fixed points and

θ(α)d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ αmax{d(x, Tx), d(y, Ty)}

for all x, y ∈ X.

Proof. For y = Tx, θ(α)d(x, Tx) < d(x, Tx) implies T has no fixed point. □

Enjouji, Nakanishi, and Suzuki [35] in 2009

Let ∆ = {(α, β) : α ≥ 0, β ≥ 0, α + β < 1}. Their Theorem 3.1 with three page proof can be improved
as follows:

Theorem. Let ψ : ∆ → (1/2, 1] be any function and let T be a mapping on a complete metric space (X, d).
Assume that there exists (α, β) ∈ ∆ such that

ψ(α, β)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + βd(y, Ty)

for all x, y ∈ X.
Then T has a unique fixed point z. Moreover limn T

nx = z holds for every x ∈ X.

Comment. For y = Tx, we have

d(Tx, T 2x) ≤ αd(x, Tx) + βd(Tx, T 2x) for all x ∈ X

and hence
d(Tx, T 2x) ≤ α

1− β
d(x, Tx) with 0 ≤ α

1− β
< 1.

Then we can apply Theorem P for T -orbitally complete quasi-metric spaces.

Nakanishi and Suzuki [36] in 2010

Their main Theorem 3.1 with a lengthy proof can be improved as follows:
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Theorem. Define any function φ from ∆ = [0, 1)2 into (1/2, 1]. Let T be a mapping on a complete metric
space (X, d). Assume that there exists (α, β) ∈ ∆ such that

φ(α, β)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ max{αd(x, Tx), βd(y, Ty)}

for all x, y ∈ X. Then T has a unique fixed point z. Moreover limn T
nx = z holds for every x ∈ X.

Comment. For y = Tx, we have

d(Tx, T 2x) ≤ max{αd(x, Tx), βd(Tx, T 2x)} = αd(x, Tx).

Then we can apply Theorem P for T -orbitally complete quasi-metric spaces.

Altun and Erduran [37] in 2011

Abstract: We present a fixed-point theorem for a single-valued map in a complete metric space using
implicit relation, which is a generalization of several previously stated results including that of Suzuki in
2008.

Let Ψ be the set of all continuous functions F : [0,∞)6 → R satisfying the following conditions:

F1: F (t1, ..., t6) is nonincreasing in variables t2, ..., t6,
F2: there exists r ∈ [0, 1), such that

F (u, v, v, u, u+ v, 0) ≤ 0 or F (u, v, 0, u+ v, u, v) ≤ 0 or F (u, v, v, v, v, v) ≤ 0

implies u ≤ rv,
F3: F (u, 0, 0, u, u, 0) > 0, for all u > 0.

Then five examples of such classes are given.

Theorem 3.1. Let (X, d) be a complete metric space, and let T be a mapping on X. Define a nonincreasing
function θ from [0, 1) into (1/2, 1] as in Suzuki’s theorem in 2008. Assume that there exists F ∈ Ψ, such that
θ(r)d(x, Tx) ≤ d(x, y) implies

F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0,

for all x, y ∈ X, then T has a unique fixed point z and limn T
nx = z holds for every x ∈ X.

Comments. The first part of proof runs as follows:

Since θ(r) ≤ 1, θ(r)d(x, Tx) ≤ d(x, Tx) holds for every x ∈ X, by hypotheses, we have

F (d(Tx, T 2x), d(x, Tx), d(x, Tx), d(Tx, T 2x), d(x, T 2x), 0) ≤ 0,

and so from (F1),

F (d(Tx, T 2x), d(x, Tx), d(x, Tx), d(Tx, T 2x), d(x, Tx) + d(Tx, T 2x), 0) ≤ 0.

By (F2), we have d(Tx, T 2x) ≤ rd(x, Tx), that is, T is an RHR map and applicable our Theorem P for
quasi-metric spaces.

The original proof was five page long. The uniqueness of the fixed point was also given.
In Theorem 3.1, θ : [0, 1) → (1/2, 1] can be any function.

Karapinar [38] in 2012

Theorem. Let T : X → X be an orbitally continuous self-map on the T-orbitally complete metric space
(X, d). Suppose there exist real numbers a1, a2, a3, a4, a5 satisfying the conditions

0 ≤ a4 − a2
a1 + a2

< 1, a1 + a2 > 0, and 0 ≤ a3 − a5,
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such that
E(x, y) ≤ a4d(x, y) + a5d(x, T

2x)

where
E(x, y) := a1d(Tx, Ty) + a2[d(x, Tx) + d(y, Ty)] + a3[d(y, Tx) + d(x, Ty)]

for all x, y ∈ X. Then, T has at least one fixed point.

Comment. For y = Tx, we have

E(x, y) := a1d(Tx, T
2x) + a2[d(x, Tx) + d(Tx, T 2x)] + a3d(x, T

2x) ≤ a4d(x, Tx) + a5d(x, T
2x),

(a1 + a2)d(Tx, T
2x) ≤ (a4 − a2)d(x, Tx) + (a5 − a3)d(x, T

2x) ≤ (a4 − a2)d(x, Tx),

d(Tx, T 2x) ≤ a4 − a2
a1 + a2

d(x, Tx) with 0 ≤ a4 − a2
a1 + a2

< 1.

Therefore Theorem P for T -orbitally complete quasi-metric spaces can be applicable.

Alsulami et al. [10] in 2014

Corollary 30. Let (X, q) be a complete quasi-metric space and let T : X → X be a mapping such that

q(Tx, Ty) ≤ λq(x, y), ∀x, y ∈ X,

where λ ∈ [0, 1). Then T has a unique fixed point in X.

Comment. Corollary 30 follows from our Theorem Q for T -orbitally complete (X, q).

Chandok, Narang, and Taoudi [39] in 2014

Definition 2.1. Suppose (X,≤) is a partially ordered set and T : X → X. T is said to be monotone
nondecreasing if for all x, y ∈ X, x ≤ y implies Tx ≤ Ty.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a metric d on X such
that (X, d) is a complete metric space. Suppose that T is a continuous self-mapping on X, T is monotone
nondecreasing mapping and

d(Tx, Ty) ≤ α
d(x, Tx)d(y, Ty)

d(x, y)
+ β(d(x, y)) + γ(d(x, Tx) + d(y, Ty)) + δ(d(x, Ty) + d(y, Tx))

for all x, y ∈ X, x ≥ y, x ̸= y and for some α, β, γ, δ ∈ [0, 1) with α+β+2γ+2δ < 1. If there exists x0 ∈ X
with x0 ≤ Tx0, then T has a fixed point.

Comments. For a quasi-metric space without considering the order, x ̸= y = Tx implies

d(Tx, T 2x) ≤ β + γ + δ

1− α− γ − δ
d(x, Tx) with 0 ≤ β + γ + δ

1− α− γ − δ
< 1.

Hence Theorem P implies the existence of a fixed point for a T-orbitally complete space.

Kumam, Dung, and Sitthithakerngkiet [40] in 2015

Definition 2.4. Let T : X → X be a mapping on metric space X. The mapping T is said to be a generalized
quasi-contraction iff there exists q ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ qmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(T 2x, x),

d(T 2x, Tx), d(T 2x, y), d(T 2x, Ty)}.
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We state and prove the new fixed point theorems which are general cases of the Ćirić fixed point theorem.
¢¥

Theorem 3.1. Let (X, d) be a metric space. Suppose that T : X → X is a generalized quasi-contraction and
X is T-orbitally complete. Then we have

1. T has a unique fixed point x∗ in X.
2. limn→∞ Tnx = x∗ for all x ∈ X.
3. d(Tnx, x∗) ≤ qn

1−qd(x, Tx) for all x ∈ X and n ∈ N.

Comments. We will give a simple form of Theorem 3.1 as in Kannan’s and Ćirić’s theorems.
By putting y = Tx, the generalized quasi-contraction becomes

d(Tx, T 2x) ≤ qmax{d(x, Tx), d(x, T 2x)}.

Case 1. If d(x, Tx) ≥ d(x, T 2x) for all x ∈ X, then d(Tx, T 2x) ≤ q d(x, Tx) and hence Theorem P works
Case 2. If d(x, Tx) ≤ d(x, T 2x) for some x ∈ X, then

d(Tx, T 2x) ≤ q d(x, T 2x) ≤ q[d(x, Tx) + d(Tx, T 2x)]

implies
d(Tx, T 2x) ≤ q

1− q
d(x, Tx).

If 0 ≤ q
1−q < 1 or 0 ≤ q < 1

2 , then T is an RHR map.
Therefore, Theorem P can be applicable to Theorem 3.1 when 0 ≤ q < 1

2 .

Nalawade and Dolhare [41] in 2016

Theorem 3.2. Let (X, d) be a complete metric space and let T be a mapping on X . For a non-increasing
function θ : [0, 1) → (1/2, 1], α ∈ [0, 1/2), and r = α

1−α , assume that θ(r)d(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) for all x, y ∈ X.

Then T has a unique fixed point z and limn T
nx→ z holds for every x ∈ X.

Comments. In the original form of Theorem 3.2, θ : [0, 1) → (1/2, 1] was given by Suzuki in 2008.
For y = Tx, we have

d(Tx, T 2x) ≤ α

1− α
d(x, Tx) with 0 ≤ α

1− α
< 1.

Therefore Theorem 3.2 follows from Theorem P for quasi-metric spaces. The uniqueness of fixed point follows
from the original contractive condition.

I.A. Rus [42] in 2018

By definition, f is a weakly Picard operator if the sequence {fn(x)}n∈N converges for all x ∈ X at its
limit (which may depend on x) is a fixed point of f . If f is a weakly Picard operator, then we consider the
operator f∞ : X → X, defined by f∞(x) := limn→∞ fn(x).

Theorem 2.3. [43] Let (X, d) be a complete metric space and f : X → X be an operator. We suppose that:

(1) There exists α ∈]0, 1[ such that,

d(f2(x), f(x)) ≤ αd(x, f(x)), for all x ∈ X,

i.e., f is a graphic contraction.
(2) limn→∞ f(fn(x)) = f(limn→∞ fn(x)), for all x ∈ X.

Then we have
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(i) f is a weakly Picard operator.
(ii) d(x, f∞(x)) ≤ α

1−αd(x, f(x)), for all x ∈ X.
(iii) For x∗ ∈ Fix(f), let Xx∗ := {x ∈ X : fn(x) → x∗ as n → ∞}. Let {yn}n∈N be a sequence in Xx∗

such that
d(yn, f(yn)) → 0 as n→ ∞.

Then, yn → x∗ as n→ ∞.
(iv) Let {yn}n∈N be a sequence in Xx∗ , x∗ ∈ Fix(f). If α < 1/3 and

d(yn+1, f(yn)) → 0 as n→ ∞,

then, yn → x∗ as n→ ∞.

This result suggests the following problem:

Problem 2.4. [43] Which metric conditions imposed on an operator f imply a similar conclusion as that
in Theorem 2.3?

Comments. We get the above from [42] in 2018. Theorem P can be an answer to Problem 2.4.
We obtained a similar theorem of Park [26] in 1980 which was our first result on the RHR maps.

Miñana and Valero [44] in 2019

It is stated in [44]: Taking into account the exposed facts about G-metric spaces and quasi-metric spaces,
we are able to show that most fixed point results obtained in G-metric spaces can be deduced from a fixed
point result stated in quasi-metric spaces obtained by Park in [26]. To this end, let us recall such a result:

Theorem 5.15. [44] Let (X, τ) be a topological space, let δ : X×X → [0,∞) be a continuous mapping, such
that δ(x, y) = 0 ⇐⇒ x = y, and let f : X → X be a mapping. Suppose that there exist x, x0 ∈ X, such that
the following conditions hold:

(1) limn→∞ δ(fn(x0), f
n+1(x0)) = 0;

(2) (fn(x0))n∈N converges to x with respect to δ;
(3) f is orbitally continuous at x with respect to δ.

Then x ∈ Fix(f) = {y ∈ X : f(y) = y}.

Comments. This is a variant of our Basic Principle [26] in 1980. Theorem 5.15 suggests that all results in
this article might hold for more general settings.

Berinde and Păcurar [45] in 2022

The RHR maps are called a graphic contraction (orbital contraction) and gave its examples as Banach
contraction, Kannan mapping, Ćirić-Reich-Rus contraction, Bianchini mapping, Chatterjea mapping, Zam-
firescu mapping, Hardy-Rogers contraction, and the Berinde almost contraction.

In this paper the aim is to emphasize, by means of several examples, how one can simplify and unify the
proofs of some classical fixed point theorems emerging from Banach contraction principle, such as Kannan
fixed point theorem, Chatterjea fixed point theorem, Bianchini fixed point theorem, and Zamfirescu fixed
point theorem, using a technique based on the concepts of graphic contractions and approximate fixed point
sequence.

Chandra, Joshi and Joshi [46] in 2022

Let (X, d) be a metric space, and T : X → X. Then for all x, y ∈ X, we denote

m(Tx, Ty) = ad(x, y) + bmax{d(x, Tx), d(y, Ty)}+ c[d(x, Ty) + d(y, Tx)],
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where a, b and c are non-negative reals such that a+b+2c = r with r ∈ [0, 1). Now, we consider the following
generalized contractive condition

θ(r)min{d(x, Tx), d(x, Ty)} ≤ d(x, y) implies d(Tx, Ty) ≤ m(Tx, Ty).

Theorem 4. Let (X, d) be a complete metric space, and T : X → X. Assume that there exists r ∈ [0, 1) such
that the preceding generalized contractive condition is satisfied for each x, y ∈ X, where θ : [0, 1) → (1/2, 1] is
the function defined by Suzuki in 2008. Then T has a unique fixed point z ∈ X. Moreover, limn→∞ Tnx = z
for all x ∈ X.

Comments. As we have seen several times, Suzuki’s function can be replaced by any function θ : [0, 1) →
(1/2, 1]. For y = Tx, the contractive condition reduces to

d(Tx, T 2x) ≤ rd(x, Tx), ∀x ∈ X.

Hence Theorem P for T -orbitally complete quasi-metric spaces is applicable to T .

The original proof of Theorem 4 was almost four page long. Moreover, several related results are added.

Final Remark for Section 3. In this section, we showed that most of metric fixed point theorems holds
for quasi-metric spaces. Even our Basic Principle in 1980 and the main theorem of Miñana and Valero [44]
in 2019 state that they can be deduced from the one for particular topological spaces.

However, from now on, we review the original forms of known theorems without checking whether the
metric spaces can be extended or not.

4. Extended RHR maps with auxiliary functions

The various contractive type conditions have been extended with the aid of some auxiliary functions; for
example, comparison functions, control functions, gauge functions, simulation functions, etc.

There are many generalizations of the RHR maps even in the realm of single-valued maps. From the
1980 paper of Park and Rhoades [27], we deduced a new Theorem R. In this section, we collect old and new
results based on some auxiliary functions.

Rakotch [47] in 1962 and Browder [48] in 1968

A selfmap T on a complete metric space (X, d) is is called a Rakotch contraction if there exists a (not
necessarily strictly) decreasing function α from R+, the set of all nonnegative reals, into [0, 1] such that
α(t) < 1 for all t > 0, and

d(Tx, Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X.

Then T has a fixed point.

Subsequently, Rakotch’s result was generalized by Felix Browder [48] in 1968 who introduced the following
contractive condition: Given a function ϕ : R+ → R+ such that ϕ(t) < t for all t > 0, we call T ϕ-contractive
if

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X.

Theorem 1. (Browder) Let (X, d) be complete and T be ϕ-contractive, where ϕ is increasing and right
continuous. Then T has a fixed point.

Every such mapping T is called a Browder contraction.

Boyd and Wong [49] in 1969

Let (X, ρ) be a metric space. We shall denote the range of ρ by P , and the closure of P by P , so
P = {ρ(x, y) : x, y ∈ X}.
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Theorem 1. Let X be a complete metric space, and let T : X → X satisfy

ρ(Tx, Ty) ≤Mψ(ρ(x, y))

for some constant M <∞, where ψ : P → [0,∞) is upper semicontinuous from the right on P , and satisfies
ψ(t) < t for all t ∈ P\{0}. Then, T has a unique fixed point x0, and Tnx→ x0 for each x ∈ X.

Comment. A slightly different version of this follows from Theorem R of Park and Rhoades [9] in 1980
later.

Geraghty [50] in 1973

Let Ψ denote the class of all real functions β : [0,+∞) → [0, 1) satisfying the condition

β(tn) → 1 implies tn → 0, as n→ ∞.

In order to generalize the Banach Contraction Principle, Geraghty proved the following result:

Theorem. [50] Let (X, d) be a complete metric space and let f : X → X be a self-map. Suppose that there
exists β ∈ Ψ such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence
{fn(x)} converges to z.

Comment. Theorem can be extended by taking the condition

d(fx, f2x) ≤ β(d(x, fx))d(x, fx).

Kasahara [51] in 1979

Let f be a self-map of a metric space (X, d). Given x ∈ X, let O(x) = {fnx : n ∈ N} and O(x) be its
closure. A point x ∈ X is said to be regular for f if diam O(x) <∞. Given x, y ∈ X, let

m(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)},

and
δ(x, y) = diam{O(x) ∪O(y)}.

The Browder contraction was extended as follows:
There exists a non-decreasing right continuous function ϕ : [0,∞) → [0,∞) such that ϕ(t) < t for t > 0

and, for any x, y ∈ X,

(Dd) d(fx, fy) ≤ ϕ(d(x, y)) (Browder [48])
(Dm) d(fx, fy) ≤ ϕ(m(x, y)) (Danes̆)
(Dδ) d(fx, fy) ≤ ϕ(δ(x, y)) if x, y are regular (Kasahara [51])

For details, see Park [12] in 1980.

Comment. For y = Tx, (Dδ) can be extended to

d(fx, f2x) ≤ ϕ(δ(x, fx)) if x is regular.

Park [26] in 1980

Now we have our main result, which is motivated by Husain and Sehgal (1977). Let R+ be the set of
nonnegative real numbers.
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Theorem 4. Let f be a selfmap of a metric space (X, d) satisfying the following conditions:

(i) there is a u ∈ X such that O(u) has a cluster point ξ ∈ X and diamO(u) <∞.
(ii) there is an upper semicontinuous map ϕ : R5

+ → R+ which is nondecreasing in each coordinate variable
and satisfies the condition ϕ(t, t, t, t, t) < t for any t > 0 and the inequality

d(fx, fy) ≤ ϕ(d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)) for all x, y ∈ O(u).

Then ξ ∈ X is a fixed point of f and f iu→ ξ.

Comment. For y = fx, Theorem 4 can be extended. Since then there have been appeared many Meir-Keeler
type contractive conditions.

Park [12] in 1980

Bisht [52] in 2023 commented: Later in 1980, Park [12] augmented Rhoades’ comparative study of various
contractive definitions by including Meir-Keeler and Matkowski type of contractive definitions.

Billy Rhoades [29] in 2007 stated: In 1980 Sehie Park [12] constructed a table of contractive conditions
of Meir-Keeler type, which extended the list in my Transactions paper.

A point u in a metric space X is said to be regular if diam(O(x)) is finite. The most general fixed point
theorem he obtained is the following.

Theorem 2.3. Let T be a selfmap of a metric space (X, d). Suppose there exists a regular point u ∈ X such
that

(i) O(u) has a regular cluster point p ∈ X and
(ii) the following condition holds on O(u) ∪O(p):
Given an ε > 0 there exists a δ > 0 such that, for any x, y ∈ X,

ε ≤ m(x, y) < ε+ δ0 implies d(Tx, Ty) ≤ ε0,

where
m(x, y) := max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a unique fixed point p ∈ O(u) and Tnu→ p.

Comment. For y = Tx, Theorem 2.3 can be extended.

Park and Rhoades [9] in 1980

In this paper we established several fixed point theorems involving hypotheses weak enough to include a
number of known theorems as special cases.

Theorem 2. Let f be a selfmap of a metric space (X, d) satisfying:
(1) δ(O(x)) <∞ for each x ∈ X, where δ denotes the diameter.
(2) There exists a u ∈ X such that O(u) has a cluster point p ∈ X.
(3) There exists a function φ : [0,∞) → [0,∞) which is nondecreasing, continuous from the right and

satisfies φ(t) < t for each t > 0 and the inequality

d(f(x), f2(y)) ≤ φ(δ(O(x) ∪O(f(y)))) for each x, y ∈ X.

Then p is the unique fixed point of f and limn f
n(u) = p.

These results extend works of Pal-Maiti, Park, Hegedüs and Daneš. A 2-metric space version of Theorem
2 is added in [9].

Moreover, Theorems of Rus and Hicks-Rhoades are consequences of Theorem 2.
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Comments. In some works of Park (e.g., [1] in 2023), the contractive condition in Theorem 2 is stated as
follows:

d(f(x), f2(x)) ≤ φ(δ(O(x) ∪O(f(y)))) for each x, y ∈ X.

Then Theorem 2 should be corrected as follows:

Theorem R. Let f be a selfmap of a quasi-metric space (X, d) satisfying:
(1) δ(O(x)) <∞ for each x ∈ X, where δ denotes the diameter.
(2) There exists a u ∈ X such that O(u) has a cluster point p ∈ X.
(3) There exists a function φ : [0,∞) → [0,∞) which is nondecreasing, continuous from the right and

satisfies φ(t) < t for each t > 0 and the inequality

d(f(x), f2(x)) ≤ φ(δ(O(x)) for each x ∈ X.

Then p is the unique fixed point of f and limn f
n(u) = p.

Tasković [53] in 1980

Theorem 2. [53] Let T be a mapping of a metric space (X, ρ) into itself and let X be T-orbitally complete.
Suppose that there exists a function φ : R0

+ → R0
+ := [0,+∞) satisfying

[∀t ∈ R+ := (0,+∞)] [φ(t) < t and lim supz→t+0φ(z) < t]

such that
ρ[Tx, Ty] ≤ φ(diam{x, y, Tx, Ty, T 2x, T 2y, . . . })

and diamO(x) ∈ R0
+ for all x, y ∈ X.

Then T has a unique fixed point ζ ∈ X and {Tn(a)}n∈N converges to ζ for every a ∈ X.

Comment. Tasković claimed in 2009 that his theorem implies theorems of Walter [54] and Kirk and Saliga
[30] below. Note that our Theorem R can be applied to Theorem 2 of Tasković.

Walter [54] in 1981

Let ϕ denotes a contractive gauge function on a metric space M . This means ϕ : R+ → R+ is continuous,
nondecreasing, and satisfies ϕ(s) < s for s > 0. Also, O(x) = {x, T (x), T 2(x), · · · } and O(x, y) = O(x)∪O(y)
for x, y ∈M .

Theorem 4.2. [54] Let M be a complete metric space and suppose T : M → M has bounded orbits and
satisfies the following condition. For each x, y ∈M ,

d(T (x), T (y)) ≤ ϕ(diam(O(x, y))).

Then T has a unique fixed point z ∈M and limk→∞ T k(x) = z for each x ∈M .

Comment. Walter’s Theorem 4.2 is a consequence of our Theorem R.

Rhoades [55] in 1997

From text: In this paper we trace the history of some general fixed point principles, from single maps, to
pairs of maps, and to more than two maps. In most cases we also provide an application of the procedure.

In applying Theorem HR in 1979 to specific situations, it is often the case that the contractive definition is
strong enough that condition (iii) there is not needed. Applications of Theorem HR to some other contractive
definitions appear in Rhoades [7].

Sehie Park also established some general fixed point theorems based on this observation. Theorem 2 of
Park [26] strengthens Theorem HR by replacing the completeness of X with the completeness of O(x).
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Theorem P1. [26, Theorem 1] Let T be a selfmap of a metric space (X, d). If

(i) there exist a point u ∈ X such that the orbit O(u) has a cluster point z ∈ X,
(ii) T is orbitally continuous at z and Tz, and
(iii) T satisfies d(Tx, Ty) < d(x, y) for all x, y = Tx ∈ O(u), x ̸= y,

then z is a fixed point of T.

Some applications of Theorem Pl appear in [26] and [7]. A modest extension of Theorem HR is the
following:

Proposition 1. Let T be a selfmap of a metric space (X, d). Let 0 < h < 1. Suppose there exists a point
x ∈ X such that

(A) xn := Tnx has a convergent subsequence with limit z ∈ X, and, for this x,
(B) d(Ty, T 2y) < hd(y, Ty) for each y ∈ O(x).
Then, for this x,
(i) lim Tnx := z,
(ii) d(Tnx, z) ≤ hn

1−hd(x, Tx), and
(iii) z is a fixed point of T in X if and only if G(x) := d(x, Tx) is lower semicontinuous at z.

Park [26] established the following general principle [26, Theorem 3.1] for a pair of maps.

Theorem P2. Let S and T be selfmaps of a metric space (X, d). If there exists a sequence {xi} ⊂ X, where
x2i+i := Sx2i, x2i+2 := Tx2i+1, such that {xi} is complete, and if there exists a λ ∈ [0, 1) such that

(1) d(Sx, Ty) ≤ λd(x, y) for each distinct x, y ∈ {xi}

satisfying either x = Ty or y = Sx, then either:

(i) S or T has a fixed point in {xi}, or
(ii) {xi} converges to some z ∈ X and

d(xi, z) ≤
λi

1− λ
d(x0.x1) for i > 0.

Further, if either S or T is continuous at z and (1) holds for any distinct x, y ∈ {xi}, then z is a common
fixed point of S and T.

Comment. Then 12 Corollaries of other authors added as examples. In this paper, more sophisticated
theorems with known examples were added.

Kirk and Saliga [30] in 2000

Theorem 4.3. Let M be a complete metric space and suppose T :M →M has bounded orbits and satisfies:
there exists α < 1 such that for each x, y ∈M ,

d(T (x), T (y)) ≤ α diam(O(x, y)) ∀ x, y ∈M.

Suppose {xn} ⊂M satisfies limn d(xn, T (xn)) = 0. Then T has a unique fixed point z ∈M , and limc→0+ diam(Lc) =
0. Moreover, limn d(xn, T (xn)) = 0 if and only if limn xn = z.

Here, O(x, y) = O(x) ∪ O(y), where O(x) := {x, Tx, T 2x, . . . } for all x, y ∈ M , and Lc := {x ∈ M :
F (x) ≤ c} for all c ≥ 0, where F (x) := d(x, Tx) for every x ∈ M . It was noticed in [ks] that F is an
r.g.i. on M . We recall that a function G : M → R is said to be a regular-global-inf (r.g.i.) at x ∈ M if
G(x) > infM (G) implies there exist ε > 0 such that ε < G(x)− infM (G) and a neighborhood Nx of x such
that G(y) > G(x)− ε for each y ∈ Nx. If this condition holds for each x ∈M , then G is said to be an r.g.i.
on M .
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5. Concluding remarks 2. By taking y = T (x) in Theorem 4.3 one has

d(T (x), T 2(x)) ≤ αdiam(O(x, T (x))) = αdiam(O(x)) for all x ∈M,

and this quickly leads to
diam(O(T (x))) ≤ αdiam(O(x)) for all x ∈M.

This can be rewritten as

diam(O(x)) ≤ (1− α)−1[diam(O(x))− diam(O(T (x)))] for all x ∈M.

Since d(x, T (x)) ≤ diam(O(x)), if the mapping φ : M → R defined by setting φ(x) = diam(O(x)) is lower
semicontinuous then this condition, which is much weaker than the one in Theorem 4.3, assures that T has
at least one fixed point by Caristi’s Theorem.

Comment. Here the reader can find another generalization of RHR maps.

Akkouch [56] in 2002

We prove that the conclusion of a result of Kirk and Saliga ([30], Theorem 4.3, p.149) remain valid for a
wide class of contractive gauge functions.

A natural question was addressed by Kirk and Saliga in [30]. Does the conclusion of their Theorem 4.3
remain valid under the weaker assumption of Theorem 4.2 of Walter [54]. A first answer is given by the
following. Let Φ1 be the set of contractive gauge functions ϕ satisfying, ϕ(s) < αs,∀s > 0 for some given
α ∈ [0; 1[. Then the conclusions of Theorem 4.3 are true for functions ϕ in the class Φ1. The aim of this
paper is to bring a partial response to the question addressed above by introducing a wide class of contractive
gauge functions for which the answer of this question is yes but their case could not be directly handled with
Theorem 4.3.

Main result. Let Φ be the set of continuous functions ϕ : R+ → R+ such that ϕ is nondecreasing on
R+ and such that the mapping x 7→ x − ϕ(x) from [0,+∞[ onto [0,+∞[ is strictly increasing. We notice
that each element ϕ in Φ is a gauge function and that Φ1 is strictly contained in Φ. Indeed, we can give
examples of elements in Φ\Φ1.

The following theorem is the main result of this short communication.

Theorem C. [56] Let (M,d) be a complete metric space and suppose T : M → M has bounded orbits and
satisfies the following condition:

d(Tx, Ty) ≤ ϕ(diam(O(x, y))) for all x, y ∈M,

where ϕ ∈ Φ. Then

(1) T has a unique fixed point z ∈M , and limk→+∞ T k(x) = z for each x ∈M .
(2) limc→0+ diam(Lc) = 0.
(3) For each sequence {xn} ⊂M ; limn d(xn, Txn) = 0 if and only if limn xn = z.
(4) The map F : x 7→ d(x, Tx) is an r.g.i. on M.

Comments. Note that (1) is a consequence of Walter’s Theorem 4.2. Moreover, Theorem C can be extended
like our Theorem R.

Berinde [31] in 2003

A map φ : R+ → R+ is called comparison function if it satisfies:
(i) φ is monotone increasing, i.e., t1 < t2 ⇒ φ(t1) ≤ φ(t2)
(ii) the sequence {φn(t)}∞n=0 converges to zero, for all t ∈ R+.
If φ satisfies (i) and
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(iii) Σ∞
k=0(t) converges for all t ∈ R+, then φ is said to be a (c)-comparison function.

Definition 2. Let (X, d) be a metric space. A self operator T : X → X is called a weak φ-contraction or
(φ,L)-weak contraction, provided that there exist a comparison function φ and some L ≥ 0, such that

d(Tx, Ty) ≤ φ(d(x, y)) + Ld(y, Tx) for all x, y ∈ X.

Comment. For y = Tx, this condition reduces to

d(Tx, T x) ≤ φ(d(x, Tx)) for all x ∈ X.

Proinov [57] in 2007

From Abstract: In this paper, we present the following generalization of the Banach contraction principle.
Let T : D ⊂ X → X be a continuous operator on a complete metric space (X, d) satisfying

d(Tx, T 2x) ≤ φ(d(x, Tx)) for all x ∈ D, Tx ∈ D with d(x, Tx) ∈ J,

where J ⊂ R+ is an interval containing 0, φ : J → J is a gauge function of order r ≥ 1 on J in the sense
that φ(0) = 0, φ(t)/tr is non-decreasing on J\{0} and φ(t) < t on J\{0}.

Throughout the paper J denotes an interval on R+ containing 0, that is an interval of the form [0, R], [0, R)
or [0,∞). Let us introduce the following definition.

Definition 1.1. (Gauge Functions of High Order). Let r ≥ 1. A function φ : J → J is called a gauge
function of order r on J if it satisfies the following conditions:

1. φ(λt) ≤ λrφ(t) for all λ ∈ (0, 1) and t ∈ J ;
2. φ(t) < t for all t ∈ J\{0}.

It is easy to see that the first condition of Definition 1.1 is equivalent to the following one:

φ(0) = 0 and φ(t)/tr is nondecreasing on J\{0}.

Comment. This gives another generalization of the RHR map.

Alsulami et al. [10] in 2014

Corollary 35. Let (X, q) be a complete quasi-metric space and let T : X → X be a mapping. Suppose
that, for every x, y ∈ X,

q(Tx, Ty) ≤ η(q(x, y)) for all x, y ∈ X,

where η : [0,+∞) → [0,+∞) is an upper semicontinuous mapping such that η(t) < t for all t > 0 and
η(0) = 0. Then T has a unique fixed point.

Comment. Corollary 35 can be extended for

q(Tx, T 2x) ≤ η(q(x, Tx)) for all x ∈ X.

5. On the Ćirić-Proinov-Górnicki type maps with asymptotical regularity

Ćirić [58] in 1971 introduced the notion of asymptotical regularity.

Definition. A mapping T of a metric space (X, d) into itself is said to be asymptotically regular if
limn→∞ d(Tnx, Tn+1x) = 0 for all x ∈ X.
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For a metric fixed point theorem, if we add the asymptotical regularity to the map, then the conclusion is
definitely strengthened. Conversely, some theorems on asymptotically regular maps may have more restrictive
conclusions without assuming the asymptotical regularity.

In 2006, Proinov [59] obtained some metric fixed point results under the asymptotic regularity of map-
pings. Since then a number of followers made works influenced by Proinov and others.

The Ćirić-Proinov-Górnicki type mapping is a generic name of such maps generalizing the works of
Proinov, Górnicki and others.

We borrow the following from Alsulami et al. [10] in 2014:

Definition 25. We will say that a self-mapping T : X → X on a quasi-metric space (X, q) is

(i) asymptotically right-regular at a point x ∈ X if limn→∞ q(Tnx, Tn+1x) = 0;
(ii) asymptotically left-regular at a point x ∈ X if limn→∞ q(Tn+1x, Tnx) = 0;
(iii) asymptotically regular if it is both asymptotically right-regular and asymptotically left-regular.

In this section, we show that many theorems on such Ćirić-Proinov-Górnicki type mappings can be
modified by our Theorem P without assuming the asymptotic regularity.

Proinov [59] in 2006

In this paper, Proinov [59] unified the Boyd-Wong, Jachymski, Matkowski, and Meir-Keeler type con-
tractions.

For a metric space (X, d) and a map T : X → X, let

D(x, y) = d(x, y) + γ · [d(x, Tx) + d(y, Ty)] where γ > 0,

for x, y ∈ X.
Φ1 is a class of all functions φ : R+ → R+ satisfying: for any ε > 0 there exists δ > ε such that ε < t < δ

implies φ(t) ⩽ ε.

Theorem 4.1. [59] Let T be a continuous and asymptotically regular selfmapping on a complete metric space
(X, d) satisfying the following conditions:

(i) There exists φ ∈ Φ1 such that d(Tx, Ty) ⩽ φ(D(x, y)) for all x, y ∈ X;
(ii) d(Tx, Ty) < D(x, y) for all x, y ∈ X with x ̸= y.

Then T has a contractive fixed point.

Corollary 4.6. [59] Let T be a selfmapping on a complete metric space (X, d). Suppose that for all x, y ∈ X
the following conditions hold:

(i) d(Tx, Ty) ≤ µ[d(x, y) + d(x, Tx) + d(y, Ty)] where 0 < µ < 1;
(ii) d(Tx, T 2x) ≤ d(x, Tx);
(iii) d(T kx, T k+1x) ≤ λ d(x, Tx) where k ∈ N and 0 < λ < 1.

Then T has a contractive fixed point z ∈ X.

Comments. (1) In Theorem 4.1, (i) implies (ii).
(2) In Corollary 4.6, (i) implies

(1− µ)d(Tx, T 2x) ≤ 2µd(x, Tx).

Then Theorem P works for 0 ≤ µ < 1
3 or 0 ≤ 2µ

1−µ < 1.
(3) Theorem P works for (iii) with k = 1 in Corollary 4.6.

Górnicki [60] in 2017
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Theorem 3.1. [60] If (X, d) is a complete metric space and T : X → X is an asymptotically regular mapping
such that there exists K < 1 satisfying

d(Tx, Ty) ≤ K[d(x, Tx) + d(y, Ty)] for all x, y ∈ X.

Then, T has a unique fixed point v ∈ X.

Theorem 3.3. [60] If (X, d) is a complete metric space and T : X → X is an asymptotically regular mapping
such that there exists M < 1 satisfying

d(Tx, Ty) ≤M [d(x, Tx) + d(y, Ty) + d(x, y)] for all x, y ∈ X.

Then, T has a unique fixed point v ∈ X.

Comments. (1) Theorem 3.1 is a typical example for an asymptotically regular map. In fact, the Kannan
theorem is Theorem 3.1 for 0 ≤ K < 1/2 without assuming asymptotical regularity and a consequence of
Theorem P for orbitally complete quasi-metric spaces.

(2) Theorem 3.3 follows from Theorem P for 0 < M < 1/3 without assuming asymptotical regularity.

Górnicki [61] in 2019

Górnicki [61] studied a new class of contractive mappings and proved a fixed point theorem for such
mappings over metric spaces with assumption of continuity, which is given as follows. It is to be noted that
asymptotic regularity has been assumed for these mappings in all over the metric space.

Theorem 2.6. [61] If (X, d) is a complete metric space and T : X → X is a continuous asymptotically
regular mapping and if there exists M ∈ [0, 1) and K ≥ 0 satisfying

d(Tx, Ty) ≤M · d(x, y) +K · {d(x, Tx) + d(y, Ty)} for all x, y ∈ X,

then T has a unique fixed point p ∈ X and Tnx→ p for each x ∈ X.

Bisht [62] replaced the assumption of continuity in Theorem 2.6 by a weaker version of continuity condition
like orbital continuity or k-continuity (For definitions of orbital continuity and k-continuity one may refer
[62]).

Panja et al. [63] have generalized the contractive condition (4) and have introduced a new type of
contractive mapping called Ćirić-Proinov-Górnicki type mapping.

Comments. (1) In Theorem 2.6, if 0 ≤ K < 1
2 such that M +K < 1−K, then

d(Tx, T 2x) ≤ M +K

1−K
d(x, Tx).

Therefore, our Theorem P works without assuming the continuity and asymptotical regularity of the mapping.

(2) Górnicki [61] stated in Section 3: A Kannan type mapping T : X → X such that

d(Tx, Ty) < d(x, Tx) + d(y, Ty) for all x, y ∈ X with x ̸= y,

and asymptotically regular may not have a fixed point.

For x ̸= y = Tx, the condition implies 0 < d(x, Tx) and hence the statement hold without assuming the
asymptotical regularity.

Bisht [62] in 2019

Abstract. In this note, we show that the main result (Theorem 2.6) due to Górnicki [61] is still valid if
we replace the assumption of continuity of the mapping by some weaker versions of continuity conditions.
As a by-product, we provide few more new answers to the open question of Rhoades [64] in 1988.
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Definition 1.2. [65] A self-mapping T of a metric space (X, d) is called k-continuous, k = 1, 2, 3, · · · , if
T kxn → Tz, whenever {xn} is a sequence in X such that T k−1xn → z.

Theorem 2.1. If (X, d) is a complete metric space and T : X → X is an asymptotically regular mapping
and if there exists 0 ≤M < 1 and 0 ≤ K < +∞ satisfying

d(Tx, Ty) ≤Md(x, y) +K{d(x, Tx) + d(y, Ty)}

for all x, y ∈ X, then T has a unique fixed point p ∈ X provided T is either k-continuous for k ≤ 1 or
orbitally continuous.

Comments. As for previous Theorem 2.6 of Górnicki, if 0 ≤ K < 1
2 such that M +K < 1 −K, then our

Theorem P works for Theorem 2.1 without assuming the continuity and asymptotical regularity of the map.

Final Remarks for Section 5. Recently there have appeared some complicated contractive type condi-
tions. They might be extensions of the Banach contraction, but seem to be not applicable Theorem P. Such
examples are Proinov [66] in 2020, Pant and Khantwahl [67] in 2023, Roy [68] in 2024, and some others.

6. A Rhoades Problem in 1977

From S.-S. Chang [8] in 1986: “Let (X, d) be a complete metric space and T a mapping from X into X.
T is called a Rhoades mapping if for any x, y ∈ A, x ̸= y,

(1.1) d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Concerning the existence of a fixed point for such mappings T , Rhoades [7] pointed out that the condition
A1. T is continuous and {Tnx0}∞n=0 has a cluster point for some x0 ∈ X, is needed in order to ensure

that every such T possesses a fixed point.

The following open questions were raised by Rhoades [7] (also see [64]).
(1) If T is a Rhoades mapping satisfying condition A1, does T possess a fixed point?
(2) If the answer to (1) is no, then what additional hypotheses on T or X are needed to guarantee the

existence of a fixed point?

Later, (1) was answered in the negative, see [8]. For (2) a partial answer is that the condition
A2. T is continuous and X is compact, is sufficient. (See [12, Theorem 1].)
The purpose of this paper is to introduce the concept of a C-mapping and to establish necessary and

sufficient conditions for such mappings to possess a fixed point. Using these results Rhoades’ open questions
are answered.”

We want to add up a trivial negative answer to (1) for a quasi-metric space: Let T be a Rhoades map.
Then, for each x ∈ X, we have

d(Tx, T 2x) < max{d(x, Tx), d(x, T 2x)} ≤ max{d(x, Tx), d(x, Tx) + d(Tx, T 2x)},

and hence
d(Tx, T 2x) < d(x, Tx) + d(Tx, T 2x) or 0 < d(x, Tx).

Hence T has no fixed point.

7. Historical Remarks and Conclusion

We began to study on our RHR maps in [1] in 2022. Then we knew that kind of maps only in Rus [69],
Park [26], and Jachymski [24]. That is why we named RHR maps without knowing other names due to
several authors.
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In [1] we found that the RHR theorem is logically equivalent to several propositions on fixed points,
common fixed points, stationary points, maximal elements of various multimaps by our well-known 2023
Metatheorem. So we could find many "relatives" of RHR maps.

Since then we have tried to collect the literature on RHR maps, for example, Hicks-Rhoades [23] in 1979.
Moreover, in our previous works [2], [3], [4], we noticed the importance of quasi-metric spaces.

In [2] and [3], we obtained the original forms of Theorems P and Q for quasi-metric spaces and showed
that many known metric fixed theorems hold without the symmetry.

In [4], we collected almost all things we know about RHR maps and their examples. Moreover, we derive
new classes of generalized RHR maps and fixed point theorems on them. Consequently, many of the known
results in metric fixed point theory are improved and reproved in an easy way.

Later we found some literature where the RHR maps were already called graphic contraction, iterative
contraction, weakly contraction, orbital contraction or Banach mapping; see Berinde et al. [70] in 2023.

Moreover, it is recently known that well-known metric fixed point theorems related to the RHR maps
hold for quasi-metric spaces (without assuming the symmetry) as in the present article.

In [5], we showed that the so-called Suzuki type maps are RHR maps and the proofs of results of Suzuki
and his colleagues can be simplified within a few line proofs based on our recent works on quasi-metric spaces.

Our [6], we trace the history of the RHR maps in ordered fixed point theory. Especially, from our well-
known Metatheorem, we show that the metric completeness is equivalent to generalized forms of the RHR
theorem, the Nadler fixed point theorem and some others. Moreover, the so-called Suzuki type maps are
RHR maps and proofs of related theorems are simplified within few lines.

Consequently, our recent study on RHR maps improves the metric fixed point theory in several aspects
as follows:

(1) From the beginning, the Banach contraction principle in thousands of publications is inaccurately
stated.

(2) Many contractive type conditions extending Banach contractions can be unified to BHR maps and
their extensions. All possible such conditions can be destroyed.

(3) There are hundreds of characterizations of metric completeness, see Cobzaş [71] or Park [72]. Many
of them are related to a proper generalizations of the Banach contraction, that is, the RHB theorem. We
can destroy such characterizations.

(4) There are thousands of artificial spaces extending quasi-metric spaces for metric fixed point theory.
We doubt their actual necessity for human life.
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