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Abstract

We introduce new concepts of triangular and rectangular multiplicative metric spaces, and establish fixed-
point theorems in such spaces. Then, we derive Kannan-type fixed-point theorems in triangular and rect-
angular multiplicative metric spaces.
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1. Introduction

In [2], Bashirov et al. introduced the concept of multiplicative metric on a nonempty set X as following:
A function dm : X ×X → R+ is said to be multiplicative metric if for all x, y, z ∈ X it satisfies the following
axioms:

(i) dm(x, y) = 1 if and only if x = y.

(ii) dm(x, y) = dm(y, x).

(iii) dm(x, y) ≤ dm(x, z)dm(z, y).
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In this case the pair (X, dm) is called multiplicative metric space. It has been noted in [1, 4] that several
fixed point theorems in the multiplicative metric space are indeed equivalent to those existing in metric
spaces.

In particular, it has been noticed that if (X, dm) is a multiplicative metric space, then (X, d) is a classical
metric space where d(x, y) = ln dm(x, y). To avoid this situation, we then propose new definitions.

Definition 1.1. Let X be a nonempty set, d : X × X → R+ be a function and c ≥ 1 be a real constant.
Then d is called triangular multiplicative metric if for all x, y, z ∈ X such that for all z ∈ X \ {x, y} the
following axioms hold true:

(t1) d(x, y) = 0 if and only if x = y,

(t2) d(x, y) = d(y, x),

(t3) d(x, y) ≤ c d(x, z)d(z, y).

A pair (X, d) is called triangular multiplicative metric space.

Obviously, the first axiom (t1) is different from axiom (i), which prevents reducing the multiplicative
triangular metric space to a classical metric as in the case of dm. Similar to the rectangular metric space of
Branciari [3], we define the rectangular multiplicative metric space as following:

Definition 1.2. Let X be a nonempty set, d : X ×X → R+ be a function and c ≥ 1 be a real constants.
Then d is called rectangular multiplicative metric if for all x, y ∈ X and for all distinct points u, v ∈ X\{x, y}
the following axioms hold:

(r1) d(x, y) = 0 if and only if x = y,

(r2) d(x, y) = d(y, x),

(r3) d(x, y) ≤ c d(x, u)d(u, v)d(v, y).

A pair (X, d) is called rectangular multiplicative metric space.

Example 1.3. Let X = R and d : X ×X → [0,+∞) be defined as follows

d(x, y) =

{
e|x−y| if x ̸= y,
0 otherwise.

It is easy to show that (X, d) is a triangular (rectangular) multiplicative metric space for c ≥ 1.

Example 1.4. Let X = (0,+∞) and d : X ×X → [0,+∞) be defined as follows

d(x, y) = ⟨xy ⟩,

where ⟨·⟩ : (0,+∞) → (0,+∞) is given by

⟨a⟩ =


a if a > 1,
1
a if a < 1,

0 otherwise.

It is easy to see that all the conditions of the multiplicative rectangular metric are satisfied for all c ≥ 1.

The concepts of convergence and completeness in triangular or rectangular multiplicative metrics are
similar to those in metric spaces.
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2. Main results

In this section, we establish fixed point theorems in triangular and rectangular multiplicative metric
spaces.

Theorem 2.1. Let (X, d) be a complete triangular multiplicative metric space and let f : X → X be a given
mapping. Assume there exists λ ∈ [0, 1) such that

d(fx, fy) ≤ λmax{d(x, fx), d(y, fy)} for all x, y ∈ X. (1)

Then f has a unique fixed point x∗ ∈ X and the sequence {fnx0} converges to x∗ for every x0 ∈ X.

Proof. Let x0 ∈ X. Define xn = fnx0 for all n ∈ N. We firstly observe by (1) that the fixed point is unique
whenever it exists. Assume now that there exist some n,m ∈ N such that n < m and xn = xm. Thus, we
have

d(xn, xn+1) = d(xm, xm+1) ≤ λmax{d(xm−1, xm), d(xm, xm+1)},

that is,
d(xm, xm+1) ≤ h d(xm−1, xm).

We deduce that
d(xn, xn+1) = d(xm, xm+1) ≤ λm−nd(xn, xn+1).

which is absurd unless d(xn, xn+1) = 0, that is, xn is a fixed point of f .
We will assume from now on that xn ̸= xm for all distinct n,m ∈ N, and we shall show that {xn} is a

Cauchy sequence. By using (1), we get for all n ∈ N that

d(xn, xn+1) ≤ λmax{d(xn−1, xn), d(xn, xn+1)}
= λd(xn−1, xn),

thus, by induction we obtain
d(xn, xn+1) ≤ λnd(x0, x1). (2)

Now, by using (1), we have

d(xn, xm) ≤ λmax{d(xn−1, xn), d(xm−1, xm)}, for all n ∈ N. (3)

Thus, from (2) and (3) we conclude that

d(xn, xm) ≤ max{λn, λm}d(x0, x1), for all n,m ∈ N. (4)

So, limn,m→+∞ d(xn, xm) = 0, that is, {xn} is a Cauchy sequence and since X is complete, so there exists
x∗ ∈ X such that

lim
n→+∞

d(xn, x∗) = 0. (5)

If for some n, xn = x∗ or xn+1 = fx∗, we obtain

d(x∗, fx∗) = d(xn, xn+1) or d(x∗, fx∗) = d(x∗, xn+1)

which tend to 0 as n tends to infinity, thus we deduce that x∗ = fx∗.
Assume next that xn ̸= x∗ and xn+1 ̸= fx∗ for all n ∈ N, then by using (t3) we have

d(x∗, fx∗) ≤ c d(x∗, xn)d(xn, fx∗)

≤ c2 d(x∗, xn)d(xn, xn+1)d(xn+1, fx∗).
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In other hand, from (4) we have

d(xn+1, fx∗) ≤ λ max{d(xn, xn+1), d(x∗, fx∗)}
≤ λmax{λnd(x0, x1), d(x∗, fx∗)},

so it follows that

d(x∗, fx∗) ≤ c2λn+1d(x∗, xn)d(x0, x1)max{λnd(x0, x1), d(x∗, fx∗)}. (6)

If we assume that there exists a subsequence {n(k)} such that

max{λn(k)d(x0, x1), d(x∗, fx∗)} = d(x∗, fx∗),

that is,
d(x∗, fx∗) ≤ λn(k)d(x0, x1),

then, if k tends to infinity, we get that fx∗ = x∗.
Otherwise, if there exists an integer N > 0 such that for all n > N , we have

max{λnd(x0, x1), d(x∗, fx∗)} = λnd(x0, x1),

then (6) becomes
d(x∗, fx∗) ≤ c2λ2n+1d(x∗, xn)d(x0, x1)

2.

thus, if n tends to infinity, we get by (5) that fx∗ = x∗.

As an immediate consequence, we obtain a fixed point theorem of Kannan type [5] in triangular multi-
plicative metric spaces.

Corollary 2.2. Let (X, d) be a complete triangular multiplicative metric space and let f : X → X be a given
mapping. Assume there exists λ ∈

[
0, 12

)
such that

d(fx, fy) ≤ λ
(
d(x, fx) + d(y, fy)

)
for all x, y ∈ X.

Then f has a unique fixed point x∗ ∈ X and the sequence {fnx0} converges to x∗ for every x0 ∈ X.

Next, we present a fixed point theorem in rectangular multiplicative metric space. The proof is similar
to that of the previous theorem, but for the sake of completeness, we give a full proof here.

Theorem 2.3. Let (X, d) be a complete rectangular multiplicative metric space and let f : X → X be a
given mapping. Assume there exists λ ∈

[
0, 12

)
such that

d(fx, fy) ≤ λmax{d(x, fx), d(y, fy)} for all x, y ∈ X. (7)

Then f has a unique fixed point x∗ ∈ X and the sequence {fnx0} converges to x∗ for every x0 ∈ X.

Proof. Let x0 ∈ X. Define xn = fnx0 for all n ∈ N. Clearly by (7) the fixed point is unique whenever it
exists. Assume now that there exists some n,m ∈ N such that n < m and xn = xm. Thus, we have

d(xn, xn+1) = d(xm, xm+1) ≤ λmax{d(xm, xm+1), d(xm−1, xm)}
= λ d(xm−1, xm),

We deduce that
d(xn, xn+1) = d(xm, xm+1) ≤ λm−nd(xn, xn+1).

which is absurd unless d(xn+1, xn) = 0, that is, xn is a fixed point of f .
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We will assume from now on that xn ̸= xm for all distinct n,m ∈ N, and we shall show that {xn} is a
Cauchy sequence. Observe first that from (7), for all n ∈ N, we have

d(xn, xn+1) ≤ λmax{d(xn−1, xn), d(xn, xn+1)}
= λ d(xn−1, xn),

thus, we obtain
d(xn, xn+1) ≤ λnd(x0, x1) for all n ∈ N, (8)

Now, by using condition (7), we have

d(xn, xm) ≤ λmax{d(xn−1, xn), d(xm−1, xm)} for all n,m ∈ N. (9)

Combining (8) and (9), we get

d(xn, xm) ≤ max{λn, λm}d(x0, x1) for all n,m ∈ N.

So, limn,m→+∞ d(xn, xm) = 0, that is, {xn} is a Cauchy sequence and since X is complete there exists
x∗ ∈ X such that

lim
n→+∞

d(xn, x∗) = 0. (10)

If for some n, xn = x∗ or xn+1 = fx∗, we obtain

d(x∗, fx∗) = d(xn, xn+1) or d(x∗, fx∗) = d(x∗, xn+1)

which tend to 0 as n tends to infinity, thus we deduce that x∗ = fx∗.
Assume next that xn ̸= x∗ and xn+1 ̸= fx∗ for all n ∈ N, then by using (r3) we have

d(x∗, fx∗) ≤ c d(x∗, xn)d(xn, xn+1)d(xn+1, fx∗).

Now, from (8) we have

d(xn+1, fx∗) ≤ λ max{d(xn, xn+1), d(x∗, fx∗)}
= λ max{λnd(x0, x1), d(x∗, fx∗)}.

Thus, it follows that

d(x∗, fx∗) ≤ c λn+1d(x0, x1)d(x∗, xn)max{λnd(x0, x1), d(x∗, fx∗)}. (11)

If we assume that there exists a subsequence {n(k)} such that

max{λn(k)d(x0, x1), d(x∗, fx∗)} = d(x∗, fx∗),

that is,
d(x∗, fx∗) ≤ λn(k)d(x0, x1),

thus, if k tends to infinity, we get that fx∗ = x∗.
Otherwise, if there exists an integer N > 0 such that for all n > N , we have

max{λnd(x0, x1), d(x∗, fx∗)} = λnd(x0, x1),

then (11) becomes
d(x∗, fx∗) ≤ c λ2n+1d(x∗, xn)d(x0, x1)

2.

thus, if n tends to infinity, we get by (10) that fx∗ = x∗.

As an immediate consequence, we obtain a fixed point theorem of Kannan type in rectangular multi-
plicative metric spaces..

Corollary 2.4. Let (X, d) be a complete rectangular multiplicative metric space and let f : X → X be a
given mapping. Assume there exists λ ∈

[
0, 12

)
such that

d(fx, fy) ≤ λ
(
d(x, fx) + d(y, fy)

)
for all x, y ∈ X.

Then f has a unique fixed point x∗ ∈ X and the sequence {fnx0} converges to x∗ for every x0 ∈ X.
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