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Abstract

The main goal of this paper is to study the existence and uniqueness of periodic solutions for coupled system
with Caputo tempered fractional derivative. The proofs are based upon the coincidence degree theory of
Mawhin. An example is constructed to authenticate and affirm the main findings.
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1. Introduction

Fractional calculus goes beyond classical differentiation and integration by containing non-integer orders,
a concept that has captured both theoretical interest and practical relevance across diverse research fields.
Its adaptability has elevated it to a pivotal role in the domain. Recent times have witnessed a notable
surge in research dedicated to fractional calculus, investigating various outcomes within distinct scenarios
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and manifestations of fractional differential equations and inclusions. To delve deeper into the practical
implementations of fractional calculus, readers are referred to works by Herrmann [9] and Samko et al. [23].
The works of Benchohra et al. [2], 3] have spotlighted the existence, uniqueness, and stability of diverse
problem classes, each adhering to distinct conditions. They introduced an extension of the renowned Hilfer
fractional derivative, seamlessly combining the Riemann-Liouville and Caputo fractional derivatives.

Tempered fractional calculus has emerged as an important class of fractional calculus operators in recent
years. This class can generalize various forms of fractional calculus and possesses analytic kernels, making it
an extension of fractional calculus that can describe the transition between normal and anomalous diffusion.
The definitions of fractional integration with weak singular and exponential kernels were initially established
by Buschman in [6], and further elaboration on this topic can be found in [I} 10, 111 12} [15], 16} 18, 19, 221 24].
Although the Caputo tempered fractional derivative has not been extensively explored in the literature, it
holds the potential to significantly contribute to this field. By studying this derivative, we aim to better
understand its properties and potential applications in this unique mathematical notion, thus advancing
fractional calculus.

The introduction of the coincidence degree theory by Mawhin [8, 14] has been widely employed to ana-
lyze different classes of nonlinear differential equations. This approach becomes especially advantageous in
cases where classical techniques like the fixed point principle cannot be used. In references [4l, 5] [7, 20} 21],
the application of the coincidence degree theory led to outcomes concerning fractional-order nonlinear dif-
ferential equations that would have been impossible to achieve using alternate methods such as the fixed
point principle.

In [20], the authors studied the existence and uniqueness results for a coupled system of nonlinear
k-generalized v-Hilfer type implicit fractional differential equations and periodic conditions as follows:

(F0 101 ) (6) = xa (8, 101(0), w2(0), (FDL7 1) (9), (HDL274V02) (9))

(H@”%”Wm ) (6) = x2 <5,m1(5),m2(6), (Hgﬁh%w 1) (9), <H©027ﬂ27wm > (6>> 7

wpt wrt wrt

T ) = T 0 () and O g 1) = I g (),
1917%1771[} Nk‘(l 6)7 7¢ M 1 M M 3

where § € (wi,ws), 1 @ and J ot are the k-generalized -Hilfer fractional derivative of or-

der 0 < ¢; < k and type #; € [0,1] and the k-generalized t-fractional integral of order k(1 — §;),

0; = %(191 + ks — 9;54), i € {1,2}, respectively. Moreover x1,x2 : © x R* — R are continuous func-

tions.

In [4], by using the coincidence degree theory of Mawhin, the authors studied the nonlinear pantograph
fractional equations with W-Hilfer fractional derivative:

H20 () = R (5, 10(8), w(£d)), & € (0, 4,

Ty 10(0) = 3. ro(50),
where H”}DQB ¥ denote the U-Hilfer fractional derivative of order 0 < o < 1, 0 < ¢ < 1 and type

g el0,1.7 ”1 “¥ is the U-Riemann-Liouville fractional integral of order 1 — v, (v = o+ 8 — 0f3). Moreover,
N (0, 5] x 9%2 — R is a given continuous function.
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In [I1], the authors investigated the following class of Caputo tempered fractional differential equation
with finite delay:
(§D5°w) (6) = R (6,05, DE10(5)); 6 € O := [0, ],
m(é) = p((;), o€ [7’%?0]5
J110(0) + gor0(w) = 73,

where 0 < Kk < 1, ¢ > 0, g@g’e is the Caputo tempered fractional derivative, 8 : © x C([—k,0],R) x R is
a continuous function, p € C([—k,w],R), 0 < @w < 400, 71, 72,73 are real constants, and x > 0 is the time
delay. The results are based on the fixed point theorems of Banach, Schauder and Schaefer. Observe that
this problem encompasses initial, terminal, and anti-periodic problems; however, the employed approach
does not yield solutions for the periodic problem.

In this paper, we study the existence and uniqueness of periodic solutions for the coupled system with
the Caputo tempered fractional derivative:

(g@gl’mml) (5) =N; ((5, m1(5), m2(5)) s
0 €V :=[0,], (1.1)
(g@gQ’mmg) ((5) = Ny ((5, ml(é), mz((S)) s

1(0) = 101 (3¢) = 0 and w2(0) = r2(x) =0, (1.2)

where 0 < 9; < 1, i € {1,2}, p; >0, C@gi’m,i € {1,2} is the Caputo tempered fractional derivative, and
N; : V x R2 — R is a continuous function.

It’s important to highlight that although the Caputo tempered fractional derivative has received rela-
tively little attention in existing literature, it possesses the potential to offer significant advancements in this
particular domain. Our research intends to delve into the characteristics and possible practical applications
of the Caputo tempered fractional derivative. This endeavor seeks to not only augment our comprehension
of this distinctive mathematical notion but also to propel the progress of fractional calculus. Moreover, our
study is novel in that it addresses a certain category of problems, specifically, coupled systems involving
the Caputo tempered fractional derivative alongside periodic conditions that have yet to be explored within
existing literature. This renders our contribution a natural extension in the development of this dynamic
field.

The structure of this paper is as follows: Section 2 presents certain notations and preliminaries about
the tempered fractional derivatives used throughout this manuscript. In Section 3, we present existence and
uniqueness result for the system — that are based upon the coincidence degree theory of Mawhin.
Ultimately, an illustrative example will be provided to demonstrate our outcomes.

2. Preliminaries

First, we give the definitions and the notations that we will use throughout this paper. We denote by
C(V,R) the Banach space of all continuous functions from V into R with the following norm

[Rloc = sup{[R(5)]}-
0eV

As usual, AC(V) denotes the space of absolutely continuous functions from V into R. For any j € N*,
we denote by ACY(V) the space defined by

ACH(V) = {m VR %m(d) e AO(V)} .
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Consider the space X} (0,), (b € R, 1 < p < 00) of those real-valued Lebesgue measurable functions to
on [0, 5] for which ||to]| xp < 00, where the norm is defined by:

1
* dé\r
il = ([ 19w@P )" asp<mpen)

Definition 2.1 (The Riemann-Liouville tempered fractional integral [12} [I8] [24]). Suppose that the real
function tv is piecewise continuous on [0, ] and w € Xf (0, 5), p > 0. Then, the Riemann-Liouville tempered
fractional integral of order p is defined by

§ o=9(0=35) (s
w0 = g () = i [ o

where OI§ denotes the Riemann-Liouville fractional integral, defined by

s S
0T2w(5) = F(lg) /0 (6t;0(8))19ds. (2.2)

Obviously, the tempered fractional integral (2.1)) reduces to the Riemann-Liouville fractional integral (2.2))
if p=20.

Definition 2.2 (The Riemann-Liouville tempered fractional derivative [12, [18]). For y—1 < o < ;5 €
NT, o > 0. The Riemann-Liouville tempered fractional derivative is defined by

, o8 5 e & [P ePro(s)
057 10(0) = ¢ P00f (Pw(0)) = rr— s | Gt

where (D (e@‘;m(é)) denotes the Riemann-Liouville fractional derivative, given by

8 (e7m(0)) = 0 (o7 (w00 = o [ D

Definition 2.3 (The Caputo tempered fractional derivative [12] 24]). For j—1 < p < 73; 7 € NT, o > 0.
The Caputo tempered fractional derivative is defined as

_ e 0 0 1 d’ (e¥*ro(s
OC@Q,@m((S) — %0 ggg (€p5m(5)> _ R /0 S ( - ( ))ds,

where §D%¥ (e@m(é)) denotes the Caputo fractional derivative, given by

0 B 1 0 1 d? (%1 (s))
oy (emw(a)) - T=7 /0 (=T

Lemma 2.4 ([12]). For a constant C,
0DEPC = Ce (D%, [DFYC = Ce ™ Dt

Obviously, 0D (C) # g@g’p(C’). And, g@g’@(C) s no longer equal to zero, being different from g@g((]) =
0.

Lemma 2.5 ([12, 24]). Let rw(0) € ACI[0,%] and j—1 < o < 3. Then the Caputo tempered fractional
derivative and the Riemann-Liouville tempered fractional integral have the composite properties

T8 (5—0)k [d’f (e°10(6)) ]
6=0 ’

0,9 [C O, _ —pd
0¥ [§ D2 m(é)]—m(é)—kgoe o o

and
§D2% [(T¢10(5)] = 10(5), for o € (0,1).
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Theorem 2.6 ([13]). Let w,v € AC?(V,R),7—1<0<7 (J€N),pe€[0,+00) and ¥ € C!(V,R), be a
non-decreasing function such that W' # 0 on V. Then we have

7—1
§ D56 w(0) = DL 0(6) <= w(6) = v(8) + e ¥ kzk (W(8) —p(0)*, s €V,
=0

[

Remark 2.7. If we pose w =t —v € C1(V,R), ¥(§) = and 0 < o < 1. Then we have

where

0=0

§D9Pw(8) = 0 <= w(d) = e w(0), 6 € V.

Definition 2.8 ([8] [14]). We consider the normed spaces & and 3. A Fredholm operator of index zero is a
linear operator U : Dom(U) C & — < such that

a) dimker U = codimImgU < +oo.
b) Jmg0 is a closed subset of 3.
By Definition there exist continuous projectors 0:3-53andD:3 > S satisfying
Jmgl = ker O,  ker$ = Jmgl, S = JImgl @ Jmgl, S =kerO @ ker U.
Thus, the restriction of U to Dom® N ker U, denoted by Ug, is an isomorphism onto its image.

Definition 2.9 ([8,14]). Let 3 C S be a bounded subset and U be a Fredholm operator of index zero with
DomU N 3 # (). Then, the operator k : 3 — 3 is called to be U—compact in 3 if

a) the mapping Ok : 3 S is continuous and Uk (5) C S is bounded.
b) the mapping (Uﬁ)_l (id — 6)k : 3 — O is completely continuous.

Lemma 2.10. [17] Let S,@ be_a Banach spaces, 3 C < a bounded open set and symmetric with 0 € BA
Suppose that B : DomU C S — S is a Fredholm operator of index zero with DomU N3 # 0 andk : S — S
is a O—compact operator on 3. Assume, moreover, that

Uw — ki # —k(Oro + k(—1)),

for any v € DomU N J3 and any k € (0,1], where 03 is the boundary of 3 with respect to . If these
conditions are verified, then there exist at least one solution of the equation Uw =kt on DomU N 3.

3. Main Results
Let the spaces
3 = {10 = (w1, 15) € C(V, %) : (101, 105) = (T8 0r, 0T v)

where v = (v1,v2) € C(V,mQ)}y

and R
3 =C(V,R?),
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be endowed with the norms

ol = ol =, {sup o9

We give now the definition of the operator U : DomU C & — 3
Uw = (U117, Uatog) := (g@gl’mt‘ol,oc@g%mmﬂ , (3.1)

where R
DomU = {1 € S : Ut € § and 1(0) = tv1(5) = w2(0) = roa(3) = 0}.

Lemma 3.1. Using the definition of G given in . Then
kerU = {mw € S :1(d) = (w1(5),m2(5)) = (0,0), 6 € V},

and

~

Jmgl = {U = (v1,v2) € J: /0%(%— 5)% e =) (5)ds = 0,0 € {1,2}} .
Proof. By Remark we have for all w € DomU C & the equation
Oro = (Oogghmml,%g?’mmg) — (0,0)
has a solution of the form
w0(8) = (11(6), wa(8)) = (e—mml(O),e-m%Q(O)) =(0,0), § € V,

then
kerU = {w € J: w(J) = (1(9),w2(4)) = (0,0), 6 € V}.

For v = (v1,v2) € IJmgU, there exists o = (w1, 102) € DomU such that (vy,v2) = (U111, Uatog) € 3. Using
Lemma [2.5] we obtain for every § € V and i € {1,2}:

w;(0) = e—@i5mi(0)+OI§“pivi(5)

6
I‘(lg)/o (6 — 5)% Le™0i 0= (s)ds.

Since w € DomU, then we have w;(0) = 0. Thus

= e‘pi(smi(()) +

el
/ (50— 5)0Le 9 5) i (5)ds = 0.
0
Furthermore, if v = (vy,v9) € @, and satisfies

/ (e — 5)2 Le =) (s)ds = 0, i € {1,2},
0
then for any 10(3) = (101 (), wa(8)) = (Ozg’lv%l(a), 01592’%2(5)), using Lemma [2.5 we get

(01(8),v2(8)) = (Oczagwlml(é),%g%mmg(a)) = (U1w1(6), Uzt (6)).

Therefore
w;(x) =1w;(0) =0, i € {1,2},

which implies that to € DomO. So v € JmgU.
So

~

Jmg0 = {v = (v1,v2) € ¥: / (3c— 5)2Le™ =9y (s)ds = 0, € {1,2}}.
0
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Lemma 3.2. Let U be defined by . Then O is a Fredholm operator of index zero, and the linear
continuous projector operators U : & — & and U : & — & can be written as

6(1}) = <81v1, 621}2),

such that

Bivs = / (50— )2 Le 9=y (s)ds, i € {1,2},
0

wi()
where for i € {1,2} we have
wi(5¢) = / (3¢ — )0 e il g,
0
And B - B
U(m) = (Ulml,ﬁgmz) = (0,0).

Furthermore, the operator U(:sl : JmgU — SNker U can be written by

05 (0)0) = (U1 01(6), U2 va(6))
= (01591’@1711(5)70152’921)2(5)), dEV.

), where (v—0(v)) € ker O = Jmg0.

Proof. Obviously, for each v € A, 520 = Do and v = B(v)+ (v—0(v)
= 0. So,

Using the fact that Jmgl = ker O and 02 = U then Jmgl N ngZAS

~

= TImgl & jngAS.

By the same way we get that JmgO = ker U and G° = T. It follows for each 1 € S, that o = (v — O()) +
U(t) then S = ker U + ker U. Clearly we have ker O Nker U = 0. So

= ker U @ ker U.

Using Rank—nullity theorem, we get :
codimIJmge = dim 3 — dim JmgO
= |dimker O + dim JmgD3| — dim Imgd,
and since Jmgl = ker ZAS, then
codimImg0l = dim JmgD. (3.2)
Using also Rank—nullity theorem, we obtain
dimker U = dim & — dim JmgO0 = codimImg0,

which implies that

dim ker U = codimImg0. (3.3)
By and we have:

dim ker U = codimImgl = dim JmgO,
and since dim ngﬁ < 00, then

dim ker G = codimImgU < oo.

And since Jmg0 is a closed subset of EA‘S, then U is a Fredholm operator of index zero.
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Now, we will show that the inverse of U, soker 5 19 U%l. Effectively, for v € JmgO, by Lemma we
have

UU%l(U) = (gggl,m (01691,@1111) ,g©§2,p2 (01'52,@21)1)) = (v1,v1) = . (3.4)

Furthermore, for to € DomU Nker U we get
U5 0m(0) = (T2 EDE T 0 (6), o TF P D 10(6)
- (ml(é) — 9199, (0), 12 (6) — e—m%Q(O)), SeV.
Using the fact that wv € DomU N ker U, then
(01(0), 02(0)) = (0,0).

Thus,
U5'B(w) = 1. (3.5)

Using and together, we get U%l = (U|DomUmker6)_1‘ O

Let the following hypothesis:

(H1) Assume that R1(5,0,0) # 0, N9(6,0,0) # 0 for 6 € V, and for each j € {1,2}, there exist positive
constants v;, 3; with
|Nj((5,t’0,’l)) - N]((S?anﬂﬂ < 7j|m - t{)| 4»ﬁ]|1j - U‘v

for every 0 € V and to, 10, v, 0 € R.

Deﬁnek:%%@by
ko (8) = (k1w (8), kato(8)) := (m (8, 101.(8), 102(8)) , R (6,m1(6),m2(5))>, Jev.

Then the problem (|1.1})-(|1.2]) is equivalent to the problem Uw = k.

Lemma 3.3. Suppose that (H1) is satisfied then, for any bounded open set 3 C S, the operator k is
U—compact.

Proof. Let & > 0 and the bounded open set 3 = {w € J: ||w]g < K}.

Step 1: Ok is continuous. R
Let (v)),cy be a sequence such that v; — v in S, thus for j € {1,2}, and 6 € V, we have

55k (v,)(8) — Bjk;(v)(6)]

! /0 (50— )87 1010 iy (0,)(5) — by (0) ()| .

w@;(x)
By (H1), we have
[G1k1(v,)(8) — Bk (v)(8))]

n / (50 — 5)01 L w2(3=s) lvj1(s) —vi(s)|ds

@i(3) Jo ”
wf(lz) /O (% _ S)Ql—le—pz(%—s) |’U32($) _ ’U2(8)| ds

(1 + Bo)llv; = vlls

<
< (Bl — vl
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and

B2k (v,)(8) — Bk (v)(8)]

< 22 [l ey (0) )
wzﬁ(z%) /0 (3 — 5)2Tem0ils) [v52(8) = v2(s)] ds

< (2 +B2)llv, —vlis

< (Y 489N, = vllss

where v* = 112)32(2% and 5* = lrgjaéﬁj. Thus for each j € {1,2}, we get

sup 15,%;(0,)(8) = B;k;(0)(9)] < (7" + B[y — vll5;,

and hence R R
|0k(v,) — Ok(v)|lg — 0 as g — +oo.

We deduce that Ok is continuous.

Step 2: Uk(3) s bounded
For § € V and v € 3, we have

~ 1 %
|01k (v)(0)] < w1(%)/0 (%—3)91*16*@1(;478)‘kl(v)(s)‘ds
1 4
< wl(%)/ (3¢ — 5)2 e IR (5,01 (s), v2(s)) — Vi (s,0,0)|ds
0
1 V4
wl(%)/ (50 — 5)2 " Le™ 910579 1Ry (5,0, 0)|ds
0
< N [Tt e s s
0
B g 01—1 ,—p1(3—s) d
—E (= 5)" e |va(s)|ds
< N+ (m+B)R
and
~ 1 #
|UO2ka(v)(0)] < YDQ(%)/O (%—5)92—16_92(%—8)|k2(v)(s)|d8
1 x
< w2(%)/ (%—8)92_16_92(”_5”1‘22(5,Ul(s),vg(s))—N2(5,0,0)|ds
0
1 el
m(%)/o (3¢ — 5)2 L2 Ry (5,0, 0)|ds
< N§+w:(2%)/ (3¢ = 8)2 7 ™72 oy (5)|ds
0
wffm /0 (3¢ = 5)27 72 uy(s)|ds
< N3+ (12 + B2)R
< N+ (7" + 89K,
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where RN = Sgg IN;(6,0,0)],5 € {1,2} and R 11;1;2(22‘2].
Thus for each j € {1,2}

sup [k (v)(9)] < R™ + (" + 578,

6V
which implies that

[0k (v)[lg < R+ (v + 57) R
So, Uk(3) is a bounded set in 3.

Step 3: U%l (id — O)k : 3 — S is completely continuous.

By the Arzela-Ascoli theorem, we show that Uz:sl (id — B)k(3) C & is equicontinuous and bounded. Firstly,
for any w € 3 and § € V, we get

U= (ko (6) — Dkto(6)) = (6611 (klm(é) - lelm(é)) Uyt (kzm(é) - 62k2m(5))> :

where for each j € {1,2}

Uy (kjm(5) - ijjm(é))

= oLy [Nj(a, 11 (6), 9(8)) — /0 %(% — 5)% eI IR (5, 104 (5), mg(s))ds}

w;(3)

= b ' — 5)% eI 0=IN (g s s))ds

I(Qj)/o (6 —s) § R;(s,101(s), wa(s))d
_ & g »— S jSlei j(%is) (S.101(8).109(s S
F(Qj)wj(%)/o ( ) ® N]( ;101 (8), ta(s))ds.

For allto € 3, § € V, and j € {1,2}, we get
U5~ (id = U;)k;j10(6)

< r(lgj) /06(53)01'—1@—@1(5‘5) Nj(s,ml(s%mz(s))*Nj(s,O,O)‘dS
v (6~ ) te 1= (5,0,0)lds
. F(g)]gj)(%) [ G e o), ) — 8, 5,0,0) s
+F(5;j) /05(5 — 5)% e 93007ty ()| ds
m /O " (50— 5)0 ey (s ds
< F(Zﬁl)[aj + (5 + B8]
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25"
< TN+,
where »* = max »% and I'" = max I'(g; + 1).
T 1<j<2 T 1<j<2

Which implies that, for each j € {1,2}, we get

[N** + (7 + B*)ﬁ} .

~ 2"
sup [U75; ™ (id — 5 )keymo(6)| <
sev T

Therefore

—1/- o
|65 (id — B)k]ls <

This means that U%l (id — B)k(3) is uniformly bounded in &
It remains to show that U%l (id — G)k(g) is equicontinuous.

For 0 < §; < 62 < 5,10 € 3, and j € {1,2}, we have
(G55~ (id — 5w (02) — Uy~ (id — B )kjto(1)]

A
< - 5o — g)2iLg=0i(02=8) _ (5. _ )ej—lo—pi(61—s)
+ 1 /52(5 _ )grl —p;(02—s) N;(s,101(s), o ))‘d
F(Qj) 29— S e j(s,01(s),m2(s s
+’wj (52 ?D] 51 ‘ gJ e—pj(%—s) Nj(s,ml(s),mQ(s))‘ds
I'(0j)w;(5
1
< — 5o — 520 Le=0i(62=s) _ (5. _ g)0j—1=p;j(61-5)
F(@j)/o (%2 =) (01=3)

X‘Nj(s,t’ol(s),mz(s)) - Nj(s,0,0)‘ds

1
+ /(52_5)9;‘—16—@'(52—8)

(62 — )9 Lem93(0273) _(§) — g)0i~1em9i(01=5)

R; (s, 101 (5), 0a(5)) — (5,0, 0)‘613

F(Qj) o1
1 b2 —1,—0;(
+le 52 w] 51 ) / )2 1109 N (5,101 (5), 102(5)) — N5, 0,0 | ds
+|wj 52 WJ 51 / 5)9i Lo—pj(—s) Nj(s,0,0)’dS
I'(oj)m;(>
+ ﬁ+N’f
(7 Pﬁ(gg) J /0 (62 — s)gj—le—pj(éz—s) — (61 — S)Qj_le—Pj(‘sl_s)
j
2YR+N: o2 1 (v + )R+ X
Y ] o=l —p;(d2—s) J J J

The operator U%l(id — G)k(g) is equicontinuous in & because the right-hand side of the above inequality

N]’(S, ml(s), 109(s

R;(s,0,0)]ds

tends to zero as 97 — Jo and the limit is independent of to. The Arzela-Ascoli theorem implies that

U%l (id — 6)]]&(5) is relatively compact in &. As a consequence of steps 1 to 3, we get that k is U—compact

in 3.

O
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Lemma 3.4. Assume (H1). If the condition

(v +p87)> 1
1s satisfied, then there exists 20 > 0, which is independent of k, such that,
U(w) — k() = —r[0(w) + k(—w)] = [|wo]|lg <2, & € (0, 1].

Proof. Let o € § satisfies

then

So, we obtain for any j € {1,2} and 6 € V :

Uj0;(8) = 505" 10;(6) =

1+r 7 1+x
By Lemma [2.5) we get

w0;(8) = ¢ %%1;(0)

e [OT (%5101, w3() (8) — T (R (s, —101(5), —102(5))) (8]

Thus for every j € {1,2} and § € V we obtain

[tv;(5)]
1 0 s
< |mj(0)|+(/i+1)r(9j)/o (0 —s)% 1,—p;(8 )|Nj(5,m1(8),m2(s))|ds
+“/5(5_8)9j16m(6s)m.(5 —tv1(s), —12(s))| ds
(v +1D)(05) Jo AT '
< [, (0)]

L ' i—1,—0;(0—5) |N., A
+(,<+1)F(gj)/0 (0 —8)& ™ TR (s, 101 (s), 102(s)) — Ry (s, 0,0)] ds
+ 1/6((5—3)9ﬁ'16@j(55) ‘N'(S 0 O)Ids

(k+1)(05) Jo JAT
5
+ (KJ—HK;F(Q])/O (5 — s)gj—le—@j(fs—S) ‘N] (8, —t'ol(s)7 —m2(5)) _ Nj(S,0,0)’ ds
5
Kk _ 52— 1,=p;(6—-5) N
Ty, €T .00l ds
N 5003 RS
< g (O)] + ey 2 B

I'(oj +1) I'(oj+1)

<
™ r

[wlls,

thus for every j € {1,2}, we have

supw;(9)] < 7+ S g,
0ev
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We deduce that

F*
wig < o — =20
Iwls < T30 -
1—‘*
O
Lemma 3.5. If conditions (H1) and (3.6) are verified, then there exist a bounded open set 3 C S with
O(r0) — k() 7# —x[0(w0) + k(-w)], (3.7)

for any w € 93 and any k € (0,1].

Proof. Using Lemma then there exists a positive constant 20 which is independent of x such that, if 1o
verify
O(w) — k() = —£[0(w) + k(-w)], € (0,1],

thus ||w||g < 20. So, if
3 ={w e 3 |wlg <V}, (3.8)

such that ¥ > 20, we deduce that

O(w0) — k() # —~[0(10) — k(-w)],
for all to € 93 = {w € J;||w||g = I} and x € (0, 1]. O
Theorem 3.6. Assume (H1) and (@, then the problem (1.1)-(1.2) has a unique solution in Dom®U N 3.

Proof. Tt is clear that the set 3 defined in (3.8)) is symmetric, 0 € 3 and N3 = 3 # (). In addition, By
Lemma [3.5 assume (H1) and (3.6), then

O(w) — k() # —£[0(w0) — k(-w)],

for each v € SN 3 = 93 and each « € (0,1]. By Lemma[2.10} problem (L.I)-(1.2) has at least one solution
in DomU N 3.

Now, we prove the uniqueness result. Suppose that the problem — has two different solutions
w,10 € DomU N 3. Then, we have for each § € V and j € {1,2}

chgjvmgj((s) =R; (6,101(6), w2(5)),

and
w;(0) = tw;(>) =0, 1;(0) =1,(s) = 0.

Let $(5) = w(d) —w(9), for all § € V, which means that
ﬂ((S) = (ﬂl((s),ﬂg((S)) = (ml(é) —61(5),m2(5) — 52(5)) ,fOI‘ alld € V.

Then
BUE) = (B184(0), Tatha(s))

= (§2591(0), §DE 7 10:(9))

= (§25901(6) - §D5 71101 (6), DT 102(6) — §DF*10(0)
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= (N0 (0, 01(6), w2 (8)) — N (6, 01(9), 12(6))

Ry (8,101 (), 102(8)) — Ro (8,701 (6), Wa(5)) ) (3.9)
On the other hand, by Lemma we have

0Ty E D5 (8) = 45(8) — €04 (0) = 14(6), j € {1,2}.
By (3.9) and (H1), for all § € V and j € {1,2} we have
1445(8)| = [oZ5"§ D5 15(9)]
< TP [ (5,101 (5), s () = Ry (5,1 (5), Wa () || (9)
1 0
< / (6 — 5)%Le®i(0=9)
T(0;) Jo

— N (5,11 (s), Was)) |

N; (s, 101(s), 02(s))

. 1)
<75 / (6 — 5)% e 0|8ty ()| ds
0

(o))
4O /6(5 — ) Lem0i 079|515 (5)|ds
T(ej) Jo
(" +87)s
< — - & -
< AP
Therefore,
(v +B87)x
ety < 2 a.
Hence, by (3.6), we conclude that
[l = 0

As a result, for any d € V, we get
H(0) = 0 = 101(6) = w2(9).

4. An Example

Consider the following system:

0D 210,(8) = Ry (6, 101 (5), 102(8))

CD2 5 10y(8) = Ry (8, 101(8), 102(8)) 0eVv:=0,1],

1‘01(0) = ml(l) =0 and 1’02(0) = 1‘02(1) = 0,

where
o—11-3

Ry (3,101(9), w2(8)) = W‘*’(Slnml + m1(5)>+37(1+m2(5))>

23,/

In(2+46

1[1(4-)+ e !
5 7(1+49)

@\&

Ng (5, m1(5), m2(5)) = t’Og((S) COStog (5) .

55\/7?



Djilali Benzenati et al., Lett. Nonlinear Anal. Appl. 2 (2024), 97-104 103

Here glzé,@:%, p1:2,p2:%and%:1.
It is easy to see that Nq,Ny € C([O, 1] x 9‘{2,9{). Let to,t0,v,0 € R and § € V, then

|N1 ((5,"0,11) - Ny (57%76)‘ < 465\)/E’m - tﬁ| + ﬁ |U _U’7

|N2 ((5,"0,’[1) — Ny (&Iﬁai)‘ < ﬁ’m_tﬁ| +%‘U_@|

1 1
B = and s = - which implies
™

) 1
Hence, the assumption (H1) is satisfied with 4 = m,'yg = 557 3711

* b * 1 * * 1 1
that’y :Wandﬂ :?and% :1,F :gr(g)
By simple calculations, we see that
(v + B*) " 1
7~ ~0,229 < —.
T 22 <5

With the use of Theorem our problem has a unique solution.
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