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Abstract

In 2009–2013 the author introduced a concept of an (α, β)-search functional on a metric space. Zero
existence theorem was proved for such functionals, and fixed points and coincidence theorems were obtained
as consequences. These results generalized several known theorems.

Then this idea was expanded by the author to the more general class of spaces. Here we consider a (b1, b2)-
quasimetric space and survey some topological properties of such spaces. It turns out that the zero existence
problem for (α, β)-search functionals is solved in a (b1, b2)-quasimetric space rather similarly, though there
are some features concerning the proof of the Cauchy property and convergence of correspondent sequences.
Like as in usual metric space, we obtain in (b1, b2)-quasimetric space fixed point and coincidence theorems
for multivalued mappings as consequences of the zero existence theorem for an (α, β)-search functional.
These results also generalize some previous theorems of other authors.

As well, it is of an interest to consider analogous concepts and constructions on a cone-valued metric
space, where the metric takes its values in a given cone in a normed space. We consider such cone metric
space, investigate its properties and expand the idea of an (α, β)-search functional for such spaces. Moreover,
we define a concept of a multivalued (A,B)-search conic function on a cone metric space using positive linear
operators A,B, instead of number coefficients (α, β), for the characteristics of a search conic function. Zero
existence theorem is proved for multivalued (A,B)-search conic functions. As consequences of this theorem,
coincidence and fixed point theorems are presented for multivalued mappings defined on a cone metric space.
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1. Introduction

Zero search principle for so called (α, β)-search functionals on a metric space [1, 2, 3, 4] is a useful
investigation method. It is important because it implies a series of fixed point and coincidence theorems
both for single-valued and multivalued mappings of metric spaces and theorems on the existence of preimages
of a closed subspace of a metric space, under a given mapping, generalizing some known results of other
authors.

Let us recall the concept of a multivalued (α, β)-search functional and some other necessary definitions
(see [3, 4]).

The convergence and Cauchy property of sequences in X×R+ are considered with respect to the metric
D : (X × R+)

2 → R+, where D((x′, c′), (x′′, c′′)) := d(x′, x′′) + |c′ − c′′|.

Definition 1.1. Let (X, d) be a metric space, 0 ≤ β < α. We say a multivalued functional Φ : X ⇒ R+

is (α, β)-search on X, if for any element (x, c) ∈ Gr(Φ) := {(x, c) ∈ X × R+|c ∈ Φ(x)} there is an element
(x′, c′) ∈ Gr(Φ) such that d(x, x′) ≤ 1

αc, and c
′ ≤ β

αc.

Definition 1.2. Let (X, d) be a metric space, Φ : X ⇒ R+ be a multivalued (α, β)-search functional on X.
We say the graph Gr(Φ) of the functional Φ is search-complete, if every search sequence {(xn, cn)} ⊆ Gr(Φ)
(that is a sequence with ρ(xn, xn+1) ≤ cn

α , cn+1 ≤ β
α · cn, n ∈ {0} ∪ N) converges to some element of the

graph. We say the graph of an (α, β)-search functional is search-closed, if it contains limits of all search
sequences.

The following theorem is a slightly amended version of the correspondent theorem from [4].

Theorem 1.3. Let (X, d) be a metric space, Φ : X ⇒ R+ be a multivalued (α, β)-search functional on X
with its graph being search-complete, 0 ≤ β < α. Then, for any pair (x0, c0) ∈ Gr(Φ), there exists a pair

(ξ, 0) ∈ Gr(Φ) that is 0 ∈ Φ(ξ), and d(x0, ξ) ≤
c0

α− β
. In addition, it is clear that if c0 ≤ R · (α − β), it is

true that ξ ∈ BR(x0).

2. (α, β)-search functionals on (b1, b2)-quasimetric space. Basic concepts and some results

Now, let us turn to the concept of a (b1, b2)-quasimetric space. In 1989 Voronezh (Russia) mathematician
I.A. Bakhtin introduced a concept of a b-metric space and generalized Banach contraction principle for such
spaces [5]. In the paper by 4 authors [6], and in several papers by A.V. Arutyunov and A.V. Greshnov (see
[7, 8, 9] and the bibliographies in these papers), there were considered and investigated more general spaces,
namely (b1, b2)-quasimetric spaces.

Let us give corresponding definitions and some examples.

Definition 2.1. [9] Let b1, b2, s be positive numbers, X be a set containing at least two points. A function
ρ : X2 → R+ is called an (b1, b2)-quasimetric on X if the following conditions hold for any x, y, z ∈ X.

ρ(x, y) ≥ 0, ρ(x, y) = 0 ⇐⇒ x = y;
ρ(x, y) ≤ b1ρ(x, z) + b2ρ(z, y).
If in addition the condition ρ(x, y) ≤ sρ(y, x) holds for any x, y ∈ X, we say that the b1, b2-quasimetric

ρ is s-symmetric.
In the case when s = 1, X is called symmetric (b1, b2)-quasimetric space.
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It is easy to see that the coefficients b1, b2 in the previous definition are not less than 1.
A b-metric space is a particular case of a symmetric (b1, b2)-quasimetric space, when b1 = b2 = b. As it

was already mentioned above, b-metric spaces were introduced by russian mathematician I.A. Bakhtin from
Voronezh in 1989 [5].

It should be also noticed that if s = b1 = b2 = 1, then ρ is a metric, and (X, ρ) is an ordinary metric
space.

Let us also notice that a (b1, b2)-quasimetric (and the corresponding space (X, ρ)) is called weakly sym-
metric if lim

n→∞
ρ(xn, ξ) = 0 implies that lim

n→∞
ρ(ξ, xn) = 0.

We remark that for s-symmetric (b1, b2)-quasimetric space it is true that

lim
n→∞

ρ(xn, ξ) = 0 ⇐⇒ lim
n→∞

ρ(ξ, xn) = 0.

So, every s-symmetric (b1, b2)-quasimetric space is weakly symmetric. But it is known that the converse
fails (see [6], Example 2.2).

Quasimetric spaces are studied in topology, functional and metric analysis, and have some applications
in optimization and approximation theory, and in convex analysis.

The authors of the paper [9] give the following nontrivial example of a (b1, b2)-quasimetric space, where
b1 ̸= b2. The space Lp(E) is considered, where E is a measurable bounded set in Rn, and 0 < p < 1.

Such spaces are quasinormed, because it is true that ||f1 + f2||p ≤ 2−1/p′(||f1||p + ||f2||p) for all f1, f2 ∈
Lp(E), where p′ < 0 is the number conjugate to p, that is 1/p+ 1/p′ = 1.

Moreover, for every ε > 0, it is true that

||f1 + f2||p ≤ (1 + ε)||f1||p + C(ε, p)||f2||p,∀f1, f2 ∈ Lp(E),

where C(ε, p) = (1−(1+ε)p
′
)1/p

′
. Thus, Lp(E) with 0 < p < 1 is a symmetric (b1, b2)-quasimetric space, and

the quasimetric ρLp(E) is given by the formula ρLp(E)(f1, f2) := ||f1 − f2||p, b1 = b2 = 21/p
′
. Moreover, for

every ε > 0, the (b1, b2)-generalized triangle inequality holds in Lp(E) provided that b1 = 1+ε, b2 = C(ε, p).
It is noticed in [6] that similar properties hold for the spaces lp with 0 < p < 1.
As well, in analysis and geometry there are other examples of (b1, b2)-quasimetric spaces with b1 ̸= b2 .

Definition 2.2. In a (b1, b2)-quasimetric space (X, ρ), a sequence {xk} is called convergent to a ∈ X,
if ρ(xk, a) −→

k→∞
0. We say a sequence {xk} in (X, ρ) is Cauchy if, for any ε > 0 there exists a number

N = N(ε) ∈ N, such that for all n,m ∈ N,m ≥ n > N, it is true that ρ(xn, xm) < ε.
Like as for an ordinary metric space, a (b1, b2)-quasimetric space (X, ρ) is complete if any Cauchy sequence

has at least one limit in X.

It should be mentioned that in a weakly symmetric (b1, b2)-quasimetric space (X, ρ) any convergent
sequence has a unique limit.

Now, let us consider a zero search theorem for a multivalued (α, β)-search functional in (b1, b2)-quasimetric
space.

Let (X, ρ) be a (b1, b2)-quasimetric space, and 0 ≤ β < α.
The following definition of an (α, β)-search multivalued functional φ : X ⇒ R+ on a (b1, b2)-quasimetric

space (X, ρ) is quite the same as on a usual metric space (see definition 1.1).

Definition 2.3. A multivalued functional φ : X ⇒ R+ is called (α, β)-search if for any x ∈ X and any
c ∈ φ(x) there is x′ ∈ X, c′ ∈ φ(x′) such that ρ(x, x′) ≤ c

α , c
′ ≤ β

α · c.

In addition, concepts of a search sequence and of a search-complete space, for a (b1, b2)-quasimetric space
with a given (α, β)-search multivalued functional, are also the same as for an ordinary metric space (see
above definition 1.2).
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Theorem 2.4. Let (X, ρ) be a (b1, b2)-quasimetric space, and φ : X ⇒ R+ be a multivalued (α, β)-search
functional. We suppose that X is a search complete (b1, b2)-quasimetric space and the graph Graph(φ) is
0-closed. Then, for any point x0 ∈ X and any c0 ∈ φ(x0) one can find a point ξ ∈ Nil(φ), such that

lim
γ→ξ

ρ(x0, γ) ≤
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
c0, (1)

where Q(b2
β
α , k) := 1 + b2

β
α + (b2

β
α)

2 + ...+ (b2
β
α)

k−1.
In addition, if the quasimetric ρ is lower semicontinuous in the second variable, the estimate (1) is true

for ρ(x0, ξ) = lim
γ→ξ

ρ(x0, γ).

Proof. The reasonings are quite similar to the proof of the zero search theorem for a single-valued (α, β)-
search functional in a (b1, b2)-quasimetric space [10]. Nevertheless, for the completeness, we give here the
complete proof.

We shall take into account the specifics of a (b1, b2)-quasimetric ρ which tell it from a usual metric. As
in the case of an usual metric, one can construct a sequence of points {xm}m=0,1,2,... in X, meeting the
following conditions:

(a) ρ(xm, xm+1) ≤ cm
α ;

(b) cm+1 ≤ β
αcm.

If a point xm has already been chosen, and cm = 0, we put xj = xm for all j > m. If cm > 0,
then by the conditions of the theorem and the definition of an (α, β)-search functional φ (relative to the
(b1, b2)-quasimetric ρ) there exist a point xm+1 and a value cn+1, satisfying the conditions (a) and (b).

Now, we need to prove the Cauchy property of the constructed sequence {xm}m=0,1,2,..., with respect to
the quasimetric ρ. Below we give the standart arguments. Similar reasonings are contained in [9] (see also
the papers [7, 8] where analogous sequences are considered).

At first we mention that conditions (a) and (b) imply the following inequalities

ρ(xm, xm+1) ≤
cm
α

≤ 1

α
(
β

α
)mc0, m ≥ 1. (2)

It follows that

ρ(xn, xm) ≤ b1ρ(xn, xn+1) + b2ρ(xn+1, xm) ≤ b1ρ(xn, xn+1) + b2(b1ρ(xn+1, xn+2) + b2ρ(xn+2, xm)) =

= b1ρ(xn, xn+1) + b2b1ρ(xn+1, xn+2) + (b2)
2ρ(xn+2, xm)) ≤ ... ≤ b1ρ(xn, xn+1)+

+b2b1ρ(xn+1, xn+2) + b1(b2)
2ρ(xn+2, xn+3) + ...+ (b2)

m−n−2b1ρ(xm−2, xm−1) + (b2)
m−1ρ(xm−1, xm).

Using the inequalities (2), we have:

αρ(xn, xm) ≤ b1c0(
β

α
)n[1 + b2

β

α
+ (b2

β

α
)2 + ...(b2

β

α
)m−n−2 +

1

b1
(b2

β

α
)m−n−1].

As above, we denote Q(b2
β
α , k) := 1 + b2

β
α + (b2

β
α)

2 + ...+ b2
β
α)

k−1. Then

αρ(xn, xm) ≤ b1c0(
β

α
)n[Q(b2

β

α
,m− n− 1) +

1

b1
(b2

β

α
)m−n−1]. (3)

For any k ∈ N, we denote Φ(k) := Q(b2
β
α , k − 1) + 1

b1
(b2

β
α)

k−1, and put Φ(0) = 0.
Then we have from (3) that

αρ(xn, xm) ≤ b1c0(
β

α
)nΦ(m− n). (4)

It was mentioned above that as β
α < 1 and hence (βα)

k → 0, k → ∞, it follows that there is the least natural

number k0, such that for any k ≥ k0 it is true that b2(
β
α)

k < 1. Using this number k0 one can divide the
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part of the constructed sequence between points xn and xm into ”peaces” in which of them the difference of
numbers is nongreater than k0. After that we obtain the following estimates, for any n,m ∈ N,m > n > N .
Let m− n = qk0 + r, where r be the residue of the division m− n by k0, 0 ≤ r < k0. Then

ρ(xn, xm) ≤ b1ρ(xn, xn+k0)+b2ρ(xn+k0 , xm) ≤ b1ρ(xn, xn+k0)+b2b1ρ(xn+k0 , xn+2k0)+(b2)
2ρ(xn+2k0 , xm) ≤ ...

... ≤ b1ρ(xn, xn+k0) + b2b1ρ(xn+k0 , xn+2k0) + (b2)
2b1ρ(xn+2k0 , xn+3k0) + ...

...+ (b2)
q−1b1ρ(xn+(q−1)k0 , xn+qk0) + (b2)

qρ(xn+qk0 , xm). (5)

We apply the estimates of the form (4) to every summand of the inequalities (5). One can notice that

αρ(xn+jk0 , xn+(j+1)k0) ≤ b1c0(
β

α
)n+jk0Φ(k0), j = 0, 1, ..., q − 1.

In addition,

αρ(xn+qk0 , xm) ≤ b1c0(
β

α
)n+qk0Φ(r).

So, it follows from (5) that

αρ(xn, xm) ≤ b1b1c0(
β

α
)nΦ(k0) + b2b1b1c0(

β

α
)n+k0Φ(k0) + (b2)

2b1b1c0(
β

α
)n+2k0Φ(k0) + ...

...+ b1(b2)
q−1b1c0(

β

α
)n+(q−1)k0Φ(k0) + bq2b1c0(

β

α
)n+qk0Φ(r).

Further we have (using the inequality b2(
β
α)

k0 < 1):

αρ(xn, xm) ≤ (b1)
2c0Φ(k0)(

β

α
)n[1 + b2(

β

α
)k0 + (b2)

2(
β

α
)2k0 + ...

...+ (b2)
q−1(

β

α
)(q−1)k0 ] + bq2b1c0(

β

α
)n+qk0Φ(r) =

= (b1)
2c0(

β

α
)nΦ(k0)Q(b2(

β

α
)k0 , q) + bq2b1c0(

β

α
)n+qk0Φ(r) ≤

≤ (b1)
2c0(

β

α
)n

Φ(k0)

1− b2(
β
α)

k0
+ bq2b1c0(

β

α
)n+qk0Φ(r) =

= (b1)
2c0(

β

α
)n[

Φ(k0)

1− b2(
β
α)

k0
+ bq2(

β

α
)qk0(b1)

−1Φ(r)] ≤ (b1)
2c0(

β

α
)n[

Φ(k0)

1− b2(
β
α)

k0
+ (b1)

−1Φ(r)].

So, finally we obtain

αρ(xn, xm) ≤ (b1)
2c0(

β

α
)n[

Φ(k0)

1− b2(
β
α)

k0
+ (b1)

−1Φ(r)]. (6)

As (βα)
n → 0 when n→ ∞, and the rest expression in the right part of (6) is bounded, we have ρ(xn, xm) → 0

when n → ∞. Therefore, the sequence {xm} is Cauchy, hence it converges in the search-complete space
(X, ρ) to some element ξ ∈ X. Since cm → 0, we have φ(ξ) = 0 by the conditions of the theorem, that is
ξ ∈ Nil(φ).

Further, under n = 0 the inequality (6) implies the following inequality:

αρ(x0, xm) ≤ (b1)
2c0[

Φ(k0)

1− b2(
β
α)

k0
+ (b1)

−1Φ(r)]. (7)

If m is divisible by k0, r = 0, hence Φ(r) = 0, and the inequality (7) takes the form

αρ(x0, xm) ≤ (b1)
2c0

Φ(k0)

1− b2(
β
α)

k0
. (8)
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We consider the subsequence {xjk0} of the above constructed sequence {xm}, not supposing that the metric
ρ is semicontinuous in one of its variables. It’s clear that this subsequence converges to ξ, so we obtain from
(8):

lim
γ→ξ

ρ(x0, γ) ≤ lim
j→∞

ρ(x0, xjk0) ≤ α−1(b1)
2c0

Φ(k0)

1− b2(
β
α)

k0
= α−1(b1)

2c0
Q(b2

β
α , k0 − 1) + 1

b1
(b2

β
α)

k0−1

1− b2(
β
α)

k0
=

=
αk0−1(b1)

2Q(b2
β
α , k0 − 1) + b1(b2β)

k0−1

αk0 − b2βk0
c0.

Now, basing on the proved zero existence theorem, we can suggest the following coincidence theorem.
Let (X, ρ), (Y, ν) be (b1, b2)-quasimetric spaces. In the product Y n = Y × ...×Y we consider a metric ν̂,

where ν̂(y, z) :=
n∑

k=1

ν(yk, zk) for any y = (y1, ..., yn), z = (z1, ..., zn) ∈ Y n. We denote by C(Y ) the totality

of closed subsets of Y , and ∆n stands for the main diagonal in Y n that is

∆n = {y = (y1, ..., yn) ∈ Y n|y1 = ... = yn}.

Theorem 2.5. (see also [10]) Let in the described situation F1, ..., Fn : X ⇒ C(Y ), F = F1× ...×Fn : X ⇒
C(Y n), and the graph Graph(F ) of the mapping F be ∆n-closed that is all limit points (x, y) ∈ X × Y n of
the graph Graph(F ), with y ∈ ∆n, be contained in Graph(F ). In addition, we suppose that at least one of
the graphs Graph(Fi), i = 1 , ...,n, is complete.

Let numbers α, β, γ, γ > 0, 0 < β < α, be such that for any x ∈ X, y ∈ F (x) there exist points x′ ∈ X,

y′ ∈ F (x′), such that ρ(x, x′) ≤ ν̂(y,∆n)
α , ν̂(y, y′) ≤ γ · ν̂(y,∆n), and ν̂(y

′,∆n) ≤ β
α · ν̂(y,∆n).

Then, for any point (x0, y0) = (x0, (y10, ..., yn0)) ∈ Graph(F ), that is yi0 ∈ Fi(x0), i = 1, ..., n, there exists
a convergent sequence {(xk, yk)} = {(xk, (y1k, ..., ynk))}k=0,1,..., where xk −→

m→∞
ξ, yik −→

m→∞
η ∈ Y , i = 1, ..., n,

and the point (ξ, (η, ..., η)) ∈ Graph(F ), that is ξ ∈ Coin(F1 , ...,Fn), η ∈ F1(ξ)∩ ...∩Fn(ξ). In addition, the
following estimates are valid:

lim
w→ξ

ρ(x0, w) ≤
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
ν̂(y0,∆n).

lim
v→η

ρ(y0, v) ≤ γ
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

(1− b2(
β
α)

k0)
ν̂(y0,∆n).

It is not difficult to see that this theorem is a consequence of theorem 2.4, for the functional φ : X ⇒ Y n,
where φ(x) := {c = ν̂(y,∆n)|y ∈ F (x)}. So, we do not give the proof here.

Recently, A.V. Arutyunov and A.V. Greshnov proved a coincidence theorem for two multivalued map-
pings between (b1, b2)-quasimetric spaces (X, ρ), (Y, ν) [7, 8, 9].

Before its formulation, we need to give necessary definitions.
We consider two multivalued mappings F,G : X ⇒ Y , where F (x), G(x) are non-empty closed subsets

in Y , for any x ∈ X. Suppose numbers α, β be given, with 0 ≤ β < α.

Definition 2.6. A point x ∈ X is called a coincidence point of multi-valued mappings F,G if x ∈ Coin(F,G),
that is F (x) ∩G(x) ̸= ∅.

Definition 2.7. A multivalued mapping F : X ⇒ Y is said to be α-covering if, for any x ∈ X and any
r > 0, it is true that the neighbourhood Uαr(F (x)) of the set F (x) of radius αr is covered by the image
F (Br(x)) under the mapping F of the ball Br(x) centered in x of radius r. In other words,

Uαr(F (x)) :=
⋃

y∈F (x)

Bαr(y) ⊆ F (Br(x)).
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Definition 2.8. A multi-valued mapping G is said to be β-Lipschitz if for any x1, x2 ∈ X the following
inequality holds.

H(G(x1, G(x2)) ≤ βρ(x1, x2)

Here H(A,B) stands for the Hausdorff (generalized) (b̂1, b̂2)-quasimetric between closed subsets A,B ⊂ Y
relative to the given (b1, b2)-quasimetric ν on Y . One should notice that in general the constants b̂1, b̂2
might be different from b1, b2 (see the detailed definition of the Hausdorff (generalized) (b̂1, b̂2)-quasimetric
H(A,B) in [7, 8].

In what follows we consider (b1, b2)-quasimetric spaces (X, ρ), (Y, ν). We put m0 = min{j ∈ N|b2βj <
αj}, and under the assumption that q20β < α, we put n0 = min{j ∈ N|b1(q20β)j < αj}.

Theorem 2.9. ([7, theorem 1], [8, theorem 5.7], [9, theorem 3.2]) Consider two multivalued mappings
F,G : X ⇒ Y . Let F be an α-covering multivalued mapping with closed graph Graph(F ), and G be a
β-Lipschitz multivalued mapping, 0 ≤ β < α. Suppose also that at least one of the graphs Graph(F ),
Graph(G) is a complete subspace in Y .

Then, for an arbitrary point x0 ∈ X and arbitrary positive number ε > 0, the mappings F,G have a
coincidence point ξ ∈ X such that

lim
η→ξ

ρ(x0, η) ≤
b21α

m0−1S(b2
β
α ,m0 − 1) + b1(b2β)

m0−1

αm0 − b2βm0
ν(F (x0), G(x0)) + ε. (9)

If the space (X, ρ) is weakly symmetric, and there is the limit uniqueness, then from (9) one can obtain the
following inequality for ξ.

ρ(x0, ξ) ≤ b1
b21α

m0−1S(b2
β
α ,m0 − 1) + b1(b2β)

m0−1

αm0 − b2βm0
ν(F (x0), G(x0)) + ε. (10)

If the space (X, ρ) is q0-symmetric, with q20β < α, then besides (9) and (10), ξ also satisfies the following
inequalities (11) and (12).

ρ̄(x0, ξ) ≤ q0b
2
2

b2α
n0−1S(b1q

2
0
β
α , n0 − 1) + (b1q

2
0β)

n0−1

αn0 − b1(q20β)
n0

ν(F (x0), G(x0)) + ε, (11)

lim
η→ξ

ρ̄(x0, η) ≤ q0b2
b2α

n0−1S(b1q
2
0
β
α , n0 − 1) + (b1q

2
0β)

n0−1

αn0 − b1(q20β)
n0

ν(F (x0), G(x0)) + ε. (12)

In the case when X = Y is complete, F = IdX , 0 ≤ β < 1, and G is a β-Lipschitz multivalued mapping,
the previous theorem turns to the fixed point theorem for a multivalued contraction mapping G. We do not
give here this formulation.

Below we demonstrate the connection between theorems 2.4, 2.5 and 2.9.
Before this, we need the following auxiliary statement.
Lemma 1. In an s-symmetric (b1, b2)-quasimetric space Y , for any y = (y1, y2) ∈ Y 2, the following

estimate holds.

ν̂(y,∆2) ≤
1 + s

2
ν(y1, y2) ≤

1 + s

2
b̄ν̂(y,∆2),

where b̄ = max{b1, sb2).

Proof. For any z ∈ Y , ν(y1, y2) ≤ b1ν(y1, z) + b2ν(z, y2) ≤ b1ν(y1, z) + b2sν(y2, z) ≤ b̄(ν(y1, z) + ν(y2, z)) =
b̄ν̂(y, (z, z)), where b̄ = max{b1, sb2}. As z ∈ Y is an arbitrary element, it follows that ν(y1, y2) ≤ b̄·ν̂(y,∆2).
On the other hand, ν̂(y,∆2) ≤ 1

2 [ν̂((y1, y2), (y1, y1)) + ν̂((y1, y2), (y2, y2))] ≤= 1+s
2 ν(y1, y2). So, we have

ν̂(y,∆2) ≤ 1+s
2 ν(y1, y2) ≤ 1+s

2 b̄ν̂(y,∆2).
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Theorem 2.10. The main statement of theorem 2.9 with inequality (9) follows from theorem 2.4 and
from the version of theorem 2.5, in the case when n = 2 and the functional φ : X ⇒ Y n, φ(x) := {c ∈
R+|∃y = (y1, y2), y1 ∈ F1(x), y2 ∈ F2(x), ν̂(y,∆n) = c} is replaced with the functional ψ : X ⇒ R+,
ψ(x) := {c ∈ R+|∃y = (y1, y2), y1 ∈ F (x), y2 ∈ G(x), ν(y1, y2) = c}.

Proof. Let (X, ρ), (Y, ν) be (b1, b2)-quasimetric s-symmetric spaces, b̄ = max{b1, sb2), and F1, F2 : X ⇒ Y
be given multivalued mappings satisfying the conditions of theorem 2.9. It means that the mapping F1

is α̃-covering and closed (that is its graph is closed), the mapping F2 is β̃-Lipshitsz, 0 < β̃ < α̃, and in
addition, at least one of the graphs Graph(F1),Graph(F2) is complete. We show that then all conditions of
theorem 2.5, for n = 2, are fulfilled for the multivalued functional ψ : X ⇒ R+ where ψ(x) = {c ∈ R+|∃y ∈
F (x) = (y1, y2) ∈ (F1, F2)(x), ν(y1, y2) = c}, instead of the functional φ.

At first, we show that the graph Graph(F1 × F2 ) of the mapping F = (F1, F2) is closed. Indeed, as the
mapping F2 is β̃-Lipshitsz, it is sequentially upper semicontinuous. By this reason, it is true for any con-
vergent sequence {(xk, y2k)}k=0,1,... ⊆ Graph(F2 ) that lim

k→∞
ν(y2k, F2(ξ)) = 0, if ξ = lim

k→∞
xk. Consequently,

lim
k→∞

(xk, y2k) ∈ Graph(F2 ). So, Graph(F2 ) is closed, hence Graph(F ) = Graph(F1 × F2 ) is also closed.

Now, let x ∈ X be an arbitrary point and y = (y1, y2) ∈ F (x) = (F1, F2)(x). As the mapping F1 is

α̃-covering, there exists a point x′ ∈ X, such that ρ(x, x′) ≤ ν(y1,y2)
α̃ , and y2 ∈ F1(x

′) ∩ F2(x).

Then, as F2 is β̃-Lipshitsz mapping, we have

ν(y2, F2(x
′)) ≤ H(F2(x), F2(x

′)) ≤ β̃ · ρ(x, x′) < (β̃ + α̃ · δ) · ρ(x, x′), (13)

where δ is a positive number, such that β̃ + α̃ · δ < α̃. That is 0 < δ < 1− β̃
α̃ . Here above

H(F2(x), F2(x
′)) = max{ sup

y∈F2(x′)
{ν(y, F2(x)}, sup

z∈F2(x)
{ν(z, F2(x

′)}}

is the Hausdorff quasimetric defined by the given quasimetric ν.
It follows from (13), that there exists a point y3 ∈ F2(x

′), such that ν(y2, y3) ≤ (β̃+ α̃δ) · ρ(x, x′). When
denoting y′ = (y2, y3) ∈ (F1 × F2)(x

′), we have

ν̂(y, y′) = ν(y1, y2) + ν(y2, y3) ≤ ν(y1, y2) + (β̃ + α̃δ) · ρ(x, x′) ≤

≤ ν(y1, y2) + (β̃ + α̃δ)
ν(y1, y2)

α̃
= (1 +

β̃ + α̃δ

α̃
)ν(y1, y2) = γ · ν(y1, y2), γ = (1 +

β̃ + α̃δ

α̃
).

When denoting c′ = ν(y2, y3), we also have

c′ ≤ (β̃ + α̃δ) · ρ(x, x′) ≤ (β̃ + α̃δ)
ν(y1, y2)

α̃
=
β̃ + α̃δ

α̃
ν(y1, y2) =

β̃ + α̃δ

α̃
· c.

Now, consider the multivalued functional ψ : X ⇒ R+, where ψ(x) = {c ∈ R+|∃y = (y1, y2) ∈ F (x), ν(y1, y2) =
c}. Let it be α = α̃, β = β̃ + α̃δ, γ = 1 + β

α .
We have obtained that, for any point x ∈ X and any value c = ν(y1, y2) ∈ ψ(x), there exist a point

x′ ∈ X and a value c′ ∈ ψ(x′), such that ρ(x, x′) ≤ c
α , c

′ ≤ β
α .

So, one can see that all conditions of theorem 2.4 are fulfilled, for (α, β)-search multivalued functional
ψ.

The connection between multivalued functionals φ,ψ : X ⇒ R+, φ(x) = {c ∈ R+|∃y = (y1, y2) ∈
F (x), ν̂(y,∆2) = c} is shown in lemma 1. In the case when X is a metric space, these functionals coincide
(for n = 2). So, by virtue of theorem 2.4, for any point x0 ∈ X

lim
w→ξ

ρ(x0, w) ≤
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
c0.



Fomenko T.N., Lett. Nonlinear Anal. Appl. 2 (2024), 125-137 133

lim
v→η

ρ(y0, v) ≤ γ
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

(1− b2(
β
α)

k0)
c0.

We notice that
c0 = ν(y01, y02) = ν(F1(x0), F2(x0)) · (1 + η),

where η > 0. It is clear that depending on the choice of y0 = (y01, y02), the number η may be made arbitrarily
small. Then we have

lim
w→ξ

ρ(x0, w) ≤
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
ν(F1(x0), F2(x0)) · (1 + η) = .

=
b21Q(b2

β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0
ν(F (x0), G(x0)) + ε.

Here

ε =
(b1)

2Q(b2
β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
ν(F1(x0), F2(x0)) · (1 + η)−

−
b21α

k0−1Q(b2
β
α , k0 − 1) + b1(b2β)

k0−1

αk0 − b2βk0
ν(F (x0), G(x0)) =

(b1)
2Q(b2

β
α , k0 − 1) + b1(b2

β
α)

k0−1

α(1− b2(
β
α)

k0)
[ν(F (x0), G(x0)) · η] (14)

As it was mentioned above, depending on the choice of y0 = (y01, y02) ∈ (F1(x0), F2(x0)) = F (x0), the
number η = ν(y01, y02) − ν(F1(x0), F2(x0)) may be made arbitrarily small. Hence, one can see from (14)
that the number ε may be also made arbitrarily small.

So, the estimate (9) is proved. We don’t consider here the derivation of estimates (10)–(12).

It should be noticed that the statement similar to theorem 2.10 was given in [10]. Unfortunately there
are misprints at the end of its proof given in that paper.

3. (A,B)-search conic functions on a normed-space-valued cone metric space. Basic concepts
and results

In this section we introduce a concept of a cone (conic) function with operator coefficients on a cone
metric space. The exposition of basic results here follows the author’s paper [14]. Below we prove a zero
existence theorem for such functions. On this basis, a fixed point theorem for a multivalued self-mapping of a
cone metric space is obtained, which generalizes the recent fixed point theorem by E.S. Zhukovskiy and E.A.
Panasenko [13], for a contraction multivalued mapping of a cone metric space, with an operator contracting
coefficient. In addition, we prove coincidence theorems for two multivalued mappings between cone metric
spaces, which generalize the author’s previous results on coincidences of two multivalued mappings of usual
metric spaces.

Let X be a nonempty set and E be a Banach space, θ be a trivial element of E. Let K be a positive
convex closed acute cone, that is a closed convex subset satisfying the following conditions:

1) θ ∈ K; 2)∀a ∈ K, a ̸= θ =⇒ ∀µ > 0, µa ∈ K,−µa ̸∈ K; 3)∀a, b ∈ K =⇒ ∀t ∈ [0; 1], ta+ (1− t)b ∈ K.

The cone K defines a partial order on E. Namely, for any a, b ∈ E (a ≤K b) ⇐⇒ (b − a ∈ K). Thus,
(E,K) is a given partially ordered set.

Definition 3.1. The cone metric on X associated with the cone K is a mapping dK : X2 → E satisfying
the axioms of a usual metric, that is for any x, y ∈ X, the following conditions hold.
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1. dK(x, y) ≥K θ; (dK(x, y) = θ) ⇐⇒ (x = y);

2. dK(x, y) = dK(y, x);

3. for every z ∈ X it is true that dK(x, y) ≤K dK(x, z) + dK(z, y).

Suppose that the set X ̸= ∅ is equipped with a cone metric dK as described above. The space (X, dK)
with a cone metric is called a cone metric space. In some previous works by different authors, where cone
metric spaces were used, mappings were usually characterized by numerical coefficients, as in usual metric
spaces.

In 1964 Perov proved a generalization of the contraction mapping principle [11] in spaces with a metric
taking values in the cone Rn

+ (see also [12]). A positive linear operator in Rn with the spectral radius
smaller than unity was used as a contraction coefficient. In 2018 this useful natural idea was employed
by E.S. Zhukovskiy and E.A. Panasenko [13] (without any reference to A.I. Perov papers) to characterize
contraction mappings in a cone metric space.

Here we use the idea of operator coefficients in order to develop and expand the above mentioned method
of (α, β)-search functionals to a cone metric space and to demonstrate its applications to the theory of fixed
points and coincidences. Assume that the norm in E is monotone with respect to the partial order ≤K , that
is (a ≤K b) =⇒ (∥ a ∥≤∥ b ∥). Note that in this case, K is usualy called a normal cone with the normal
constant equal to 1. Additionally, we assume that K is a generating cone, that is E = K − K. In other
words, any element a ∈ E can be represented as a difference of elements of K.

In the set of all bounded linear operators on E, we consider the subset of linear operators leaving K
invariant, that is L+ := {P ∈ L(E)|P (K) ⊆ K}. Since K is a generating cone with a monotone norm,
it is easy to see that L+ is also a positive convex closed acute cone in L(S) (see also [13]). This cone L+

defines a partial order ≤ on the space L(E). Namely, we say that for F,G,∈ L(E) it is true that F ≤ G, if
G− F ∈ L+.

Now we introduce the concept of a cone search function with operator coefficients. Multivalued mappings
will be denoted by double arrows ⇒.

Definition 3.2. A multivalued mapping φ : X ⇒ K is called a cone search function (with operator
coefficients A,B ∈ L+), or (A,B)-search cone function if the following conditions hold:

(i) A and B are bounded linear operators such that A is invertible, A−1 ∈ L+, and the composition
A−1B : K → K has a spectral radius λ = λ(A−1B) < 1;

(ii) for any x ∈ X and any c ∈ φ(x) ⊂ K, there exists an element x′ ∈ X, such that dK(x, x′) ≤K A−1(c),
and there exists a value c′ ∈ φ(x′), such that c′ ≤K A−1B(c).

The graph of an (A,B)-cone function φ is denoted by Graph(φ) = {(x, c)|x ∈ X, c ∈ φ(x)} ⊆ X × E.
The Cauchy property and convergence of sequences in X × E (in particular, in Graph(φ)) are considered
in the componentwise metric D = dK × ν, where ν(a, b) :=∥ a− b ∥.

Definition 3.3. The graph Graph(φ) of an (A,B)-cone function is called θ-complete if any Cauchy sequence
{(xn, cn)} ⊂ Graph(φ), where cn → θ as n→ ∞, converges to an element of this graph.

Graph(φ) is called θ-closed if any of its limit elements of the form (ξ, θ) is contained in it.

Theorem 3.4. Let (X, dK) be a complete cone metric space, and φ : X ⇒ K be a multivalued (A,B)-cone
function with operator coefficients A,B : K → K defined on (X, dK). Assume that the graph Graph(φ) of φ
is θ-closed. Then, for any point x0 ∈ X and any value c0 ∈ φ(x0), there exists a point x∗ = x∗(x0, c0) ∈ X,
such that θ ∈ φ(x∗) and the cone distance dK(x0, x∗) satisfies the estimate

dK(x0, x∗) ≤K A−1(I −A−1B)−1(c0).

Proof. The properties of the multivalued (A,B)-cone function φ imply that, starting from an arbitrary
initial point x0 ∈ X and any value c0 ∈ φ(x0), it is possible to construct a sequence {(xn, cn)} ⊂ Graph(φ)
with the following properties

dK(xn−1, xn) ≤K A−1(cn−1), cn ≤K A−1B(cn−1). (15)
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We show that {xn} is a Cauchy sequence in (X, dK). Indeed, consider the cone distance dK(xn, xn+m).
Note that the assumption λ(A−1B) < 1 implies the invertibility of the operator I − A−1B : E → E. Here,

the operator (I −A−1B)−1 is equal to the sum of the iterative series
∞
Σ
i=0

(A−1B)i. This series consists of the

operators (A−1B)i ∈ L+. Since the cone L+ is closed, it follows that (I−A−1B)−1 ∈ L+; moreover, for any

N ∈ N, we have
N
Σ
i=0

(A−1B)i ≤K (I −A−1B)−1. Using the inequalities (15) and the properties of the metric

dK one obtains

dK(xn, xn+m) ≤K

m−1
Σ
j=0

dK(xn+j , xn+j+1) ≤K

m−1
Σ
j=0

A−1(cn+j) ≤K

m−1
Σ
j=0

A−1(A−1B)n+j(c0) =

= A−1
m−1
Σ
j=0

(A−1B)n+j(c0) = A−1(A−1B)n
m−1
Σ
j=0

(A−1B)j(c0) ≤K A−1(I −A−1B)−1(A−1B)n(c0).

As A−1B has the spectral radius λ = λ(A−1B) < 1, it is true that (A−1B)n −→
n→∞

0 in L+. Since the norm

is monotone, we have

∥ d(xn, xn+m) ∥≤K∥ A−1(I −A−1B)−1(A−1B)n(c0) ∥ −→
n→∞

0.

So, it follows that {xn} is a Cauchy sequence. As the cone metric space (X, dK) is complete, there exists a
limit lim

n→∞
xn = x∗ ∈ X. The metric dK is continuous (in the corresponding topology), consequently

dK(x0, x∗) = lim
n→∞

dK(x0, xn) ≤K lim
n→∞

n−1
Σ
j=0

dK(xj , xj+1) ≤K lim
n→∞

n−1
Σ
j=0

A−1(cj) ≤K

≤K A−1 lim
n→∞

n−1
Σ
j=0

(A−1B)j(c0) ≤K A−1(I −A−1B)−1(c0).

We notice that cn ≤K (A−1B)n(c0) −→
n→∞

0. By the theorem condition, Graph(φ) is {θ}-closed, so (x∗, θ) ∈
Graph(φ) that is θ ∈ φ(x∗).

Now we present some consequences of the proved theorem.

Theorem 3.5. Let (X, dK) be a complete cone metric space and F : X ⇒ X be a multivalued mapping.
Let a mapping φ : X ⇒ K, where φ(x) = {d ∈ K|∃z ∈ F (x), d = dK(x, z)}, be an (A,B)-cone function
for linear bounded operators A,B ∈ L+. Assume that the graph Graph(φ) of φ is {θ}-closed. Then, for
any point x0 ∈ X and any y0 ∈ F (x0), there exists a fixed point ξ = ξ(x0, y0) of F , i.e., ξ ∈ F (ξ), and the
following estimate holds: dK(x0, ξ) ≤K A−1(I −A−1B)−1(dK(x0, y0)).

Proof. The statement follows from Theorem 3.4. One can notice that the set of zeros of (A,B)-search cone
function φ, that is the set of points x ∈ X, such that 0 ∈ φ(x), coincides with the fixed point set of F .
Taking c0 = dK(x0, y0) and repeating step by step the proof of Theorem 3.4, we obtain a point x∗ such that
(x∗, 0) ∈ Graph(φ) that is 0 ∈ φ(x∗). It is equivalent to the inclusion x∗ ∈ F (x∗).

To formulate the next result, we need the following definition.

Definition 3.6. Let (X, dK) be a cone metric space, F : X ⇒ X be a multivalued mapping, and Q : K → K
be a bounded linear operator with a spectral radius λ(Q) < 1. The mapping F is called Q-contraction
(contraction with operator coefficient Q) if for any x1, x2 ∈ X and any y1 ∈ F (x1), there exists y2 ∈ F (x2)
for which dK(y1, y2) ≤ Q(dK(x1, x2)).

The following theorem is contained in [13] and represents a cone metric analogue of the well-known Nadler
fixed point theorem for a multivalued mapping. Below we show that this result follows from Theorem 3.5
which follows, in its turn, from theorem 3.4.
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Theorem 3.7. (see [13], Theorem 1). Let (X, dK) be a complete cone metric space, F be a multivalued Q-
contraction mapping with closed images, and Q ∈ L+ be an operator contraction coefficient with the spectral
radius λ(Q) < 1. Then, for any x0 ∈ X and any y0 ∈ F (x0), the mapping F has a fixed point ξ ∈ X, that
is ξ ∈ F (ξ), and the following estimate holds: dK(x0, ξ) ≤K (I −Q)−1(dK(x0, y0)).

Proof. In fact, this is a particular case of Theorem 3.5. It is easy to see that, under the conditions of
Theorem 3.7, the mapping φ : X ⇒ K, where φ(x) = {c ∈ K|∃y ∈ F (x), c = dK(x, y)} , is a multivalued
(I,Q)-search cone function (I = idK is the identity self-mapping of K). Indeed, for any point x and any
y ∈ F (x), that is for any value c = dK(x, y) ∈ φ(x), one can find a point x′ ∈ X,x′ = y ∈ F (x) such
that dK(x, x′) = dK(x, y) ≤K c = dK(x, y), and there exists a value c′ ∈ φ(x′), that is there is an element
y′ ∈ F (x′) = F (y), such that c′ = dK(y, y′) ≤K Q(dK(x, x′)). We notice that the contraction mapping F
is closed, that is its graph is closed. Then the graph of φ is also closed, and in particular it is {θ}-closed.
Thus, all conditions of Theorem 3.5 are satisfied for the mapping F . Therefore, the statement follows from
Theorem 3.5 (which follows, in its turn, from theorem 3.4).

Now we consider the problem of existence of coincidence points for two multivalued mappings. Let
(X, dK) and (Y, ρK) be two cone metric spaces with cone metrics dK : X2 → K, ρK : Y 2 → K, taking their
values in the cone K. We assume that the space (X, dK) is complete.

Theorem 3.8. Under the described conditions, let F,G : X ⇒ Y be two multivalued mappings with bounded
closed images. Consider the mapping ψ : X ⇒ K defined by the rule ψ(x) := {c ∈ K|∃y ∈ F (x),∃z ∈
G(x), ρK(y, z) = c}. Assume that ψ is an (A,B)-search cone function, with respect to some linear operators
A,B ∈ L+. In addition, assume that Graph(ψ) is {θ}-closed. Then, for any initial point x0 ∈ X and any
pair of values y0 ∈ F (x0), z0 ∈ G(x0), the mappings F,G have a coincidence point ξ = ξ(x0, y0, z0) ∈ X,
that is F (ξ) ∩G(ξ) ̸= ∅, and the following estimate holds: dK(x0, ξ) ≤K A−1(I −A−1B)−1(ρK(y0, z0)).

Proof. It is not difficult to see that the set of coincidence points of the mappings F and G coincides with the
set of zeros of the functional ψ. Therefore, the statement follows from Theorem 3.4. Indeed, for an initial
point x0 ∈ X and points y0 ∈ F (x0), z0 ∈ G(x0), we take c0 = ρK(y0, z0) as the initial value of φ. When
reasoning similarly to the proof of Theorem 3.4, one obtains a point ξ ∈ X, such that φ(ξ) ∋ 0. It means
that F (ξ) ∩G(ξ) ̸= ∅, in other words, ξ ∈ Coin(F,G) := {x ∈ X|F (x) ∩G(x) ̸= ∅}.

4. Conclusion and possible prospects

In this paper we have presented some results concerning the development and expanding of our early
idea of search for zeros of (α, β)-search functionals in two directions. The first one is the expanding this idea
to (b1, b2))-quasimetric spaces. The second one is an essential development and expanding it to cone metric
spaces with a cone metric taking its values in a cone of a normed space. As one can see, this approach allows
to generalize several previous results of other authors.

It seems to be of interest and of some use to continue and expand this activity, to consider the more
general classes of spaces and multivalued mappings.
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