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Abstract

This study aims to demonstrate coupled fixed point theorems for contractive type conditions with control
functions in partially ordered partial metric spaces. Furthermore, some consequences of the established
conclusions and illustrative instances to back up the findings are discussed. An application to the Volterra
type integral equation is also shown, followed by an illustration.
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1. Introduction

The Banach contraction mapping principle is the most famous and widely known fixed point theorem. It
has been expanded and improved by other mathematicians. A partial metric space is a more generalized
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version of metric space. Matthews [17, 18] proposed the concept of partial metric space, which does not need
each object to have a zero distance from itself. Partial metric spaces are generally acknowledged as crucial
in creating models in computation theory (e.g., [10], [15]). Later, Matthews demonstrated the partial metric
version of the Banach fixed point theorem [4]. Following this finding, many researchers have performed
additional studies on fixed point theorems and their topological features in the same class of spaces (see e.g.
([2, 3, 11, 13, 14, 16, 20]).
Bhashkar and Lakshmikantham [5] proved a few coupled fixed point theorems on ordered metric spaces in
2006 and provided an application in determining whether a periodic boundary value problem has a unique
solution or not (see, also [9]). Later, Lakshmikantham [7] and Ćirić looked into a few more coupled fixed
point theorems in partially ordered sets. In addition, a large number of scholars have found coupled fixed
point solutions for mappings under different contractive conditions within the context of generalized metric
spaces and metric spaces. In [1], Abdeljawad et al. considered a new Meir-Keeler type coupled fixed point
results os ordered partial metric space. Later, Bilgili et al. [6] remarked that many coupled fixed point result
could be derived from fixed point results as well. Using more general contraction condition, Karapınar et
al. [12] discussed the similar type of results. In [22], Roldan et al. discussed multidimensional fixed point
results in ordered partial metric spaces under (ψ,φ)-contractive condition. More detail on fixed point results
in generalized metric spaces are discuused in the book [14].
In the context of partial metric spaces, Saluja [23] recently proved a few linked fixed point theorems for con-
tractive conditions involving rational terms. Furthermore, he provided some implications and applications
of the established results (see, also [19]).
In this paper, we prove coupled fixed point theorems for contractive type conditions with control functions
in partially ordered partial metric spaces. Furthermore, we provide some concrete cases to support the
established findings. An application of the Volterra integral equation is also provided. Our findings expand
and generalize several previously published results from the literature.

2. Preliminaries

In this section, we give some basic definitions and lemmas which are useful for main results in this paper.

Definition 2.1. ([5]) Let (U,≤) be a partially ordered set. The mapping F : U × U → U is said to have
the mixed monotone property if F (x, y) is monotone non-decreasing in x and is monotone non-increasing in
y, that is, for any x, y ∈ U ,

x1, x2 ∈ U, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y),

and
y1, y2 ∈ U, y1 ≤ y2 ⇒ F (x, y1) ≥ F (x, y2).

Definition 2.2. ([5, 7]) An element (x, y) ∈ U × U is said to be a coupled fixed point of the mapping
F : U × U → U if F (x, y) = x and F (y, x) = y.

Example 2.3. ([2]) Let U = [0,+∞) and F : U × U → U be defined by F (x, y) = x+y
3 for all x, y ∈ U .

Then one can easily see that F has a unique coupled fixed point (0, 0).

Example 2.4. ([2]) Let U = [0,+∞) and F : U×U → U be defined by F (x, y) = x+y
2 for all x, y ∈ U . Then

we see that F has two coupled fixed point (0, 0) and (1, 1), that is, the coupled fixed point is not unique.

Definition 2.5. ([18]) Let U ̸= ∅ be a set. A partial metric on U is a function p : U × U → [0,+∞) such
that for all x, y, t ∈ U the followings are satisfied:

(PM1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(PM2) p(x, x) ≤ p(x, y),
(PM3) p(x, y) = p(y, x),
(PM4) p(x, y) ≤ p(x, t) + p(t, y)− p(t, t).
Then p is called a partial metric on U and the pair (U, p) is called a partial metric space (in short PMS).
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Remark 2.6. ([2]) It is clear that if p(x, y) = 0, then from (PM1), (PM2), and (PM3), x = y. But if
x = y, p(x, y) may not be 0.

If p is a partial metric on U , then the function ps : U × U → [0,+∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), (1)

is a metric on U .

Example 2.7. ([3]) Let U = R+, where R+ = [0,+∞) and p : U ×U → R+ be given by p(x, y) = max{x, y}
for all x, y ∈ U . Then (U, p) is a partial metric space.

Example 2.8. ([3]) Let I denote the set of all intervals [a1, b1] for any real numbers a1 ≤ b1. Let p : I×I →
[0,∞) be a function such that

p
(
[a1, b1], [a2, b2]

)
= max{b1, b2} −min{a1, a2}.

Then (I, p) is a partial metric space.

Example 2.9. ([8]) Let U = R and p : U × U → R+ be given by p(x, y) = emax{x,y} for all x, y ∈ U . Then
(U, p) is a partial metric space.

Each partial metric p on U generates a T0 topology τρ on U with the family of open p-balls {Bp(x, r) :
x ∈ U, r > 0} where Bp(x, r) = {y ∈ U : p(x, y) < p(x, x) + r} for all x ∈ U and r > 0. Similarly, closed
p-ball is defined as Bp[x, r] = {y ∈ U : p(x, y) ≤ p(x, x) + r} for all x ∈ U and r > 0.

Definition 2.10. ([17]) Let (U, p) be a partial metric space. Then:
(A1) a sequence {yn} converges to a point y ∈ U if and only if limn→∞ p(y, yn) = p(y, y).
(A2) a sequence {yn} in U is called a Cauchy sequence if and only if limm,n→∞

p(ym, yn) exists (and finite).
(A3) A partial metric space (U, p) is said to be complete if every Cauchy sequence {yn} in U converges,

with respect to τρ, to a point y ∈ U , such that, limm,n→∞ p(ym, yn) = p(y, y).
(A4) A mapping H : U → U is said to be continuous at y0 ∈ U if for every ε > 0, there exists δ > 0 such

that H
(
Bp(y0, δ)

)
⊂ Bp

(
H(y0), ε

)
.

Definition 2.11. ([17]) A partial metric space (U, p) is said to be complete if every Cauchy sequence {un}
in U converges to a point u ∈ U with respect to τρ. Furthermore,

lim
m,n→∞

p(um, un) = lim
n→∞

p(un, u) = p(u, u).

Definition 2.12. ([21]) (Control function) Let Φ be the set of all functions ϕ : [0,+∞) → [0,+∞) with the
properties

(Φ1) ϕ is continuous and non-decreasing,
(Φ2) ϕ(t) < t for each t > 0.
Obviously, if ϕ ∈ Φ, then ϕ(0) = 0 and ϕ(t) ≤ t for all t ≥ 0.

Lemma 2.13. ([2, 17, 18]) Let (U, p) be a partial metric space. Then
(B1) a sequence {un} in (U, p) is a Cauchy sequence ⇔ {un} is a Cauchy sequence in the metric space

(U, ps),
(B2) (U, p) is complete ⇔ the metric space (U, ps) is complete. Moreover,

lim
n→∞

ps(un, u) = 0 ⇔ p(u, u) = lim
n→∞

p(un, u) = lim
n,m→∞

p(un, um).

Lemma 2.14. ([13]) Let (U, p) be a partial metric space. Then
(C1) if x, y ∈ U , p(x, y) = 0, then x = y,
(C2) if x ̸= y, then p(x, y) > 0.
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One of the characterization of continuity of mappings in partial metric spaces was given by Samet et al.
[24] as follows.

Lemma 2.15. (see [24]) Let (U, p) be a partial metric space. The function F : U → U is continuous if given
a sequence {un}n∈N and u ∈ U such that p(u, u) = limn→∞ p(u, un), then p(Fu, Fu) = limn→∞ p(Fu, Fun).

Example 2.16. (see [24]) Let U = R+, where R+ = [0,+∞) endowed with the partial metric p : U×U → R+

defined p(x, y) = max{x, y} for all x, y ∈ U . Let F : U → U be a non-decreasing function. If F is continuous
with respect to the standard metric d(x, y) = |x − y| for all x, y ∈ U , F is continuous with respect to the
partial metric p.

3. Main Results

The first result is the following:

Theorem 3.1. Let (U, p,≤) be a partially ordered complete partial metric space. Suppose that the mapping
F : U × U → U satisfies the following conditions:

(1)

p(F (x, y), F (u, v)) ≤ ψ
(
∆F (x, y, u, v)

)
− φ

(
∆F (x, y, u, v)

)
, (2)

for all x, y, u, v ∈ U , where ψ,φ ∈ Φ and

∆F (x, y, u, v) = max
{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
,

(2) either F is continuous or
(3) U has the following properties
(i) if a non-decreasing sequence {xn} in U converges to some point x ∈ U , then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} in U converges to some point y ∈ U , then y ≤ yn for all n.
If there exist two elements x0, y0 ∈ U with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled fixed

point in U .

Proof. Let x0, y0 ∈ U be such that x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Let x1 = F (x0, y0) and y1 = F (y0, x0).
Then x0 ≤ x1 and y0 ≥ y1. Again, let x2 = F (x1, y1) and y2 = F (y1, x1). Since F has the mixed monotone
property on U , then we have x1 ≤ x2 and y1 ≥ y2. Repeating this process, we construct two sequences {xn}
and {yn} in U such that xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for all n ≥ 0 and

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . , y0 ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ yn+1 ≥ . . . . (3)

Now, using equation (2) for (x, y) = (xn, yn) and (u, v) = (xn+1, yn+1), we have

p(xn+1, xn+2) = p
(
F (xn, yn), F (xn+1, yn+1)

)
≤ ψ

(
∆F (xn, yn, xn+1, yn+1)

)
− φ

(
∆F (xn, yn, xn+1, yn+1)

)
, (4)

where

∆F (xn, yn, xn+1, yn+1) = max
{
p(xn, xn+1), p(yn, yn+1), p(xn, F (xn, yn)),

p(yn, F (yn, xn))
}

= max
{
p(xn, xn+1), p(yn, yn+1), p(xn, xn+1),

p(yn, yn+1)
}

= max
{
p(xn, xn+1), p(yn, yn+1)

}
.
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Putting this value in equation (4), we get

p(xn+1, xn+2) ≤ ψ
(
max

{
p(xn, xn+1), p(yn, yn+1)

})
− φ

(
max

{
p(xn, xn+1), p(yn, yn+1)

})
. (5)

Similarly, we have

p(yn+1, yn+2) ≤ ψ
(
max

{
p(xn, xn+1), p(yn, yn+1)

})
− φ

(
max

{
p(xn, xn+1), p(yn, yn+1)

})
. (6)

From equations (5) and (6), we have

max
{
p(xn+1, xn+2), p(yn+1, yn+2)

}
≤ ψ

(
max

{
p(xn, xn+1), p(yn, yn+1)

})
− φ

(
max

{
p(xn, xn+1), p(yn, yn+1)

})
, (7)

which implies

max
{
p(xn+1, xn+2), p(yn+1, yn+2)

}
< ψ

(
max

{
p(xn, xn+1), p(yn, yn+1)

})
< max

{
p(xn, xn+1), p(yn, yn+1)

}
, (8)

by the property of ψ. This means that
{
un := max

{
p(xn, xn+1), p(yn, yn+1)

}}
is a decreasing sequence of

positive real numbers. So, there exists an L ≥ 0 such that

lim
n→∞

un = lim
n→∞

max
{
p(xn, xn+1), p(yn, yn+1)

}
= L. (9)

We shall show that L = 0. Suppose, on the contrary that, L > 0. Taking the limit as n→ ∞ and using the
properties of ψ, φ in equation (7), we obtain

L ≤ lim
n→∞

ψ(un)− lim
n→∞

φ(un) = ψ(L)− φ(L)

< ψ(L) < L,

which is a contradiction. Thus L = 0. Hence,

lim
n→∞

p(xn, xn+1) = 0 and lim
n→∞

p(yn, yn+1) = 0. (10)

Now, we show that {xn} and {yn} are Cauchy sequences. Suppose, to the contrary, that at least one of {xn}
or {yn} is not a Cauchy sequence, then there exists an ε > 0 for which we can find subsequences {xn(k)},
{xm(k)} of {xn} and {yn(k)}, {ym(k)} of {yn} with n(k) > m(k) ≥ k such that

max
{
p(xn(k), xm(k)), p(yn(k), ym(k))

}
≥ ε. (11)

Furthermore, corresponding to m(k), we can choose n(k) in such a way that it is the smallest integer with
n(k) > m(k) ≥ k and satisfies equation (11). Then

max
{
p(xn(k)−1, xm(k)), p(yn(k)−1, ym(k))

}
< ε. (12)

Using the triangle inequality and equation (12), we have

p(xn(k), xm(k)) ≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

− p(xn(k)−1, xn(k)−1)

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k))

< p(xn(k), xn(k)−1) + ε, (13)
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and

p(yn(k), ym(k)) ≤ p(yn(k), yn(k)−1) + p(yn(k)−1, ym(k))

− p(yn(k)−1, yn(k)−1)

≤ p(yn(k), yn(k)−1) + p(yn(k)−1, ym(k))

< p(yn(k), yn(k)−1) + ε. (14)

From equations (11), (13) and (14), we have

ε ≤ max
{
p(xn(k), xm(k)), p(yn(k), ym(k))

}
≤ max

{
p(xn(k), xn(k)−1), p(yn(k), yn(k)−1)

}
+ ε. (15)

Letting k → ∞ in equation (15) and using equation (10), we get

lim
k→∞

max
{
p(xn(k), xm(k)), p(yn(k), ym(k))

}
= ε. (16)

By the triangle inequality, we have

p(xm(k), xn(k)) ≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))

− p(xn(k)−1, xn(k)−1)

≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k)), (17)

and

p(ym(k), yn(k)) ≤ p(ym(k), yn(k)−1) + p(yn(k)−1, yn(k))

− p(yn(k)−1, yn(k)−1)

≤ p(ym(k), yn(k)−1) + p(yn(k)−1, yn(k)). (18)

From equations (11), (17) and (18), we have

ε ≤ max
{
p(xm(k), xn(k)), p(ym(k), yn(k))

}
≤ max

{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1)

}
+max

{
p(xn(k)−1, xn(k)), p(yn(k)−1, yn(k))

}
. (19)

Again by the triangle inequality, we have

p(xm(k), xn(k)−1) ≤ p(xm(k), xn(k)) + p(xn(k), xn(k)−1)

− p(xn(k), xn(k))

≤ p(xm(k), xn(k)) + p(xn(k), xn(k)−1), (20)

and

p(ym(k), yn(k)−1) ≤ p(ym(k), yn(k)) + p(yn(k), yn(k)−1)

− p(yn(k), yn(k))

≤ p(ym(k), yn(k)) + p(yn(k), yn(k)−1), (21)

Therefor,
max

{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1)

}
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≤ max
{
p(xm(k), xn(k)), p(ym(k), yn(k))

}
+max

{
p(xn(k), xn(k)−1), p(yn(k), yn(k)−1)

}
≤ max

{
p(xn(k), xn(k)−1), p(yn(k), yn(k)−1)

}
+ ε. (22)

From equations (19)-(22), we have

ε−max
{
p(xn(k), xn(k)−1), p(yn(k), yn(k)−1)

}
≤ max

{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1)

}
≤ max

{
p(xn(k), xn(k)−1), p(yn(k), yn(k)−1)

}
+ ε. (23)

Taking the limit as k → ∞ in equation (23) and using equation (10), we get

lim
k→∞

max
{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1)

}
= ε. (24)

Since xm(k) ≤ xn(k)−1 and ym(k) ≥ yn(k)−1, so from equation (2), we have

p(xm(k)+1, xn(k)) = p(F (xm(k), ym(k)), F (xn(k)−1, yn(k)−1)

≤ ψ
(
∆F (xm(k), ym(k), xn(k)−1, yn(k)−1)

)
− φ

(
∆F (xm(k), ym(k), xn(k)−1, yn(k)−1)

)
, (25)

where
∆F (xm(k), ym(k), xn(k)−1, yn(k)−1)

= max
{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1),

p(xm(k), F (xm(k), ym(k))), p(ym(k), F (ym(k), xm(k)))
}

= max
{
p(xm(k), xn(k)−1), p(ym(k), yn(k)−1),

p(xm(k), xm(k)+1), p(ym(k), ym(k)+1)
}
.

Taking the limit as k → ∞ in the above and using equations (10) and (24), we get

lim
k→∞

∆F (xm(k), ym(k), xn(k)−1, yn(k)−1) = max{ε, ε, 0, 0} = ε. (26)

From equations (25) and (26), we obtain

p(xm(k)+1, xn(k)) ≤ ψ(ε)− φ(ε). (27)

Similarly, we have

p(ym(k)+1, yn(k)) ≤ ψ(ε)− φ(ε). (28)

From equations (27) and (28), we obtain

max
{
p(xm(k)+1, xn(k)), p(ym(k)+1, yn(k))

}
≤ ψ(ε)− φ(ε). (29)

Using equation (24) in equation (29), we obtain

ε ≤ ψ(ε)− φ(ε) < ψ(ε) < ε, (30)
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by the property of ψ, which is a contradiction. Hence, we conclude that

lim
n,m→∞

p(xn, xm) = 0 and lim
n,m→∞

p(yn, ym) = 0. (31)

Due to equation (1), we have

ps(xn, xm) ≤ 2p(xn, xm) and ps(yn, ym) ≤ 2p(yn, ym). (32)

Letting n,m→ ∞ in equation (32) and using equation (31), we obtain

lim
n,m→∞

ps(xn, xm) = 0 and lim
n,m→∞

ps(yn, ym) = 0. (33)

Then {xn} and {yn} are Cauchy sequences in the metric space (U, ps). Since (U, p) is complete, it is also
the case for (U, ps). Then, there exist f, g ∈ U such that

lim
n→∞

ps(xn, f) = 0 and lim
n→∞

ps(yn, g) = 0. (34)

On the other hand we have

ps(xn, f) = 2p(xn, f)− p(xn, xn)− p(f, f).

Letting n→ ∞ in the above equation and using equations (31) and (34), we obtain

lim
n→∞

p(xn, f) =
1

2
p(f, f). (35)

Again we have p(f, f) ≤ p(f, xn) for all n ∈ N. On letting n→ ∞, we get that

p(f, f) ≤ lim
n→∞

p(f, xn). (36)

Using equation (35) in (36), we get that

lim
n→∞

p(f, xn) = p(f, f) = 0. (37)

By similar fashion, one can show that

lim
n→∞

p(g, yn) = p(g, g) = 0. (38)

Thus, we have

lim
n→∞

p(f, xn) = p(f, f) = 0 and lim
n→∞

p(g, yn) = p(g, g) = 0. (39)

Now, we prove that f = F (f, g) and g = F (g, f). We shall distinguish the following cases.
Since (U, p) is a complete partial metric space, then there exist f, g ∈ U such that limn→∞ xn = f and

limn→∞ yn = g.
Case I: We now show that if the assumption (2) holds, then (f, g) is a coupled fixed point of F .
As, we have

f = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (f, g),

and

g = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn) = F (g, f).

Thus, (f, g) is a coupled fixed point of F .
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Case II: Suppose now that the conditions (3)(i) and (3)(ii) of the theorem hold.
Since xn → f and yn → g as n→ ∞, then we have

p(F (f, g), f) ≤ p(F (f, g), xn+1) + p(xn+1, f)− p(xn+1, xn+1)

≤ p(F (f, g), xn+1) + p(xn+1, f)

= p(F (f, g), F (xn, yn) + p(xn+1, f)

≤ ψ
(
∆F (f, g, xn, yn)

)
− φ

(
∆F (f, g, xn, yn)

)
+ p(xn+1, f), (40)

where

∆F (f, g, xn, yn) = max
{
p(f, xn), p(g, yn), p(f, F (f, g)), p(g, F (g, f))

}
= max

{
p(f, xn), p(g, yn), p(f, f), p(g, g)

}
. (41)

Letting n→ ∞ in equation (41) and using equation (39), we obtain

∆F (f, g, xn, yn) = 0. (42)

Letting n→ ∞ in equation (40) and using equation (39) and property of ψ, φ, we obtain

p(F (f, g), f) = 0. (43)

This implies that F (f, g) = f . Similarly, one can show that F (g, f) = g. This completes the proof.

If we take ψ(t) = t and φ(t) = (1− k)t for all t > 0 where k ∈ (0, 1) in Theorem 3.1, then we have the
following result.

Corollary 3.2. Let (U, p,≤) be a partially ordered complete partial metric space. Suppose that the mapping
F : U × U → U satisfies the following conditions:

(1)

p(F (x, y), F (u, v)) ≤ k max
{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
, (44)

for all x, y, u, v ∈ U , where k ∈ (0, 1) is a constant,
(2) either F is continuous or
(3) U has the following properties
(i) if a non-decreasing sequence {xn} in U converges to some point x ∈ U , then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} in U converges to some point y ∈ U , then y ≤ yn for all n.
If there exist two elements x0, y0 ∈ U with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled fixed

point in U .

Proof. As in the proof of Theorem 3.1, suppose that x0, y0 ∈ U be such that x0 ≤ F (x0, y0) and y0 ≥
F (y0, x0). Let x1 = F (x0, y0) and y1 = F (y0, x0). Then x0 ≤ x1 and y0 ≥ y1. Again, let x2 = F (x1, y1)
and y2 = F (y1, x1). Since F has the mixed monotone property on U , then we have x1 ≤ x2 and y1 ≥ y2.
Repeating this process, we construct two sequences {xn} and {yn} in U such that xn+1 = F (xn, yn) and
yn+1 = F (yn, xn) for all n ≥ 0 and

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . , y0 ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ yn+1 ≥ . . . .

Now, using equation (44) for (x, y) = (xn−1, yn−1) and (u, v) = (xn, yn), we have

p(xn, xn+1) = p
(
F (xn−1, yn−1), F (xn, yn)

)
≤ k max

{
p(xn−1, xn), p(yn−1, yn), p(xn−1, F (xn−1, yn−1)), p(yn−1, F (yn−1, xn−1))

}
= k max

{
p(xn−1, xn), p(yn−1, yn), p(xn−1, xn), p(yn−1, yn)

}
= k max

{
p(xn−1, xn), p(yn−1, yn)

}
. (45)
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Likewise, one can show that

p(yn, yn+1) = p
(
F (yn−1, xn−1), F (yn, xn)

)
≤ k max

{
p(xn−1, xn), p(yn−1, yn)

}
. (46)

Now, we have the following cases:

Case (1): If max
{
p(xn−1, xn), p(yn−1, yn)

}
= p(xn−1, xn), then from equation (45), we obtain

p(xn, xn+1) ≤ k p(xn−1, xn). (47)

Case (2): If max
{
p(xn−1, xn), p(yn−1, yn)

}
= p(yn−1, yn), then from equation (46), we obtain

p(yn, yn+1) ≤ k p(yn−1, yn). (48)

Case (3): If max
{
p(xn−1, xn), p(yn−1, yn)

}
= p(yn−1, yn), then from equation (45), we obtain

p(xn, xn+1) ≤ k p(yn−1, yn). (49)

Case (4): If max
{
p(xn−1, xn), p(yn−1, yn)

}
= p(xn−1, xn), then from equation (46), we obtain

p(yn, yn+1) ≤ k p(xn−1, xn). (50)

Adding equations (47) and (48) or (49) and (50), we obtain

p(xn, xn+1) + p(yn, yn+1) ≤ k [p(xn−1, xn) + p(yn−1, yn)]. (51)

Let Rn = p(xn, xn+1) + p(yn, yn+1), then from equation (51), we obtain

Rn ≤ kRn−1. (52)

Continuing in the same manner, we obtain

Rn ≤ kRn−1 ≤ k2Rn−2 ≤ k3Rn−3 ≤ · · · ≤ knR0. (53)

If R0 = 0, then p(x0, x1) + P (y0, y1) = 0. Hence p(x0, x1) = 0 and p(y0, y1) = 0. Therefore by Lemma 2.14
(C1), we get x0 = x1 = F (x0, y0) and y0 = y1 = F (y0, x0). This means that (x0, y0) is a coupled fixed point
F . Now, assume that R0 > 0. For each n ≥ m, where n,m ∈ N, by using the condition (PM4), we have

p(xn, xm) ≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm)

− p(xn−1, xn−1)− p(xn−2, xn−2)− · · · − p(xm+1, xm+1)

≤ p(xn, xn−1) + p(xn−1, xn−2) + · · ·+ p(xm+1, xm). (54)

Similarly, one can obtain

p(yn, ym) ≤ p(yn, yn−1) + p(yn−1, yn−2) + · · ·+ p(ym+1, ym). (55)

Thus,

Rnm = p(xn, xm) + p(yn, ym) ≤ Rn−1 +Rn−2 + · · ·+Rm

≤ (kn−1 + kn−2 + · · ·+ km)R0

≤
( km

1− k

)
R0. (56)
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By definition of metric ps, we have ps(x, y) ≤ 2p(x, y), therefore for any n ≥ m

ps(xn, xm) + ps(yn, ym) ≤ 2[p(xn, xm) + p(yn, ym)] = 2Rnm

≤
( 2km

1− k

)
R0, (57)

which implies that {xn} and {yn} are Cauchy sequences in (U, ps) since k < 1. Since the partial metric space
(U, p) is complete, by Lemma 2.13 (B2), the metric space (U, ps) is also complete, so there exist L1, L2 ∈ U
such that

lim
n→∞

ps(xn, L1) = lim
n→∞

ps(yn, L2) = 0. (58)

From Lemma 2.13 (B2), we obtain

p(L1, L1) = lim
n→∞

p(xn, L1) = lim
n→∞

p(xn, xn), (59)

and

p(L2, L2) = lim
n→∞

p(yn, L2) = lim
n→∞

p(yn, yn). (60)

But, from condition (PM2) and equation (53), we have

p(xn, xn) ≤ p(xn, xn+1) ≤ Rn ≤ knR0, (61)

and since k < 1, hence letting n→ ∞, we get limn→∞ p(xn, xn) = 0. It follows that

p(L1, L1) = lim
n→∞

p(xn, L1) = lim
n→∞

p(xn, xn) = 0. (62)

Similarly, we obtain

p(L2, L2) = lim
n→∞

p(yn, L2) = lim
n→∞

p(yn, yn) = 0. (63)

Now, we show that L1 = F (L1, L2) and L2 = F (L2, L1). We shall distinguish the following cases.
Case (i): We now show that if the assumption (2) holds, then (L1, L2) is a coupled fixed point of F .
As, we have

L1 = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (L1, L2),

and

L2 = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn) = F (L2, L1).

Thus, (L1, L2) is a coupled fixed point of F .
Case (ii): Suppose now that the conditions (3)(i) and (3)(ii) of the theorem hold.
Since xn → L1 and yn → L2 as n→ ∞, then we have

p(F (L1, L2), L1) ≤ p(F (L1, L2), xn+1) + p(xn+1, L1)− p(xn+1, xn+1)

≤ p(F (L1, L2), xn+1) + p(xn+1, L1)

= p(F (L1, L2), F (xn, yn) + p(xn+1, L1)

≤ k max
{
p(L1, xn), p(L2, yn), p(L1, F (L1, L2)), p(L2, F (L2, L1))

}
+ p(xn+1, L1)

= k max
{
p(L1, xn), p(L2, yn), p(L1, L1), p(L2, L2)

}
+ p(xn+1, L1). (64)

Letting n→ ∞ in equation (64) and using equations (62) and (63), we obtain

p(F (L1, L2), L1) ≤ 0 ⇒ p(F (L1, L2), L1) = 0.
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Hence by Lemma 2.14 (C1), we get F (L1, L2) = L1. Similarly, one can show that F (L2, L1) = L2. This
completes the proof.

Corollary 3.3. Let (U, p,≤) be a partially ordered complete partial metric space. Suppose that the mapping
F : U × U → U satisfies the following conditions:

(1)

p(F (x, y), F (u, v)) ≤ a1 p(x, u) + a2 p(y, v) + a3 p(x, F (x, y)) + a4 p(y, F (y, x)), (65)

for all x, y, u, v ∈ U , where a1, a2, a3, a4 are nonnegative reals such that a1 + a2 + a3 + a4 < 1,
(2) either F is continuous or
(3) U has the following properties
(i) if a non-decreasing sequence {xn} in U converges to some point x ∈ U , then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} in U converges to some point y ∈ U , then y ≤ yn for all n.
If there exist two elements x0, y0 ∈ U with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled fixed

point in U .

Proof. Follows from Corollary 3.2, by noting that

a1 p(x, u) + a2 p(y, v) + a3 p(x, F (x, y)) + a4 p(y, F (y, x))

≤ (a1 + a2 + a3 + a4)max
{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
= k max

{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
,

where k = a1 + a2 + a3 + a4 < 1.

Remark 3.4. Corollary 3.2 and Corollary 3.3 extend and generalize Theorem 2.1 of [2] from complete
partial metric spaces to partially ordered complete partial metric spaces.

If we take a1 = k, a2 = l and a3 = a4 = 0 where k, l ∈ (0, 1) in Corollary 3.3, then we have the following
result.

Corollary 3.5. Let (U, p,≤) be a partially ordered complete partial metric space. Suppose that the mapping
F : U × U → U satisfies the following conditions:

(1)

p(F (x, y), F (u, v)) ≤ k p(x, u) + l p(y, v), (66)

for all x, y, u, v ∈ U , where k, l are nonnegative reals such that k + l < 1,
(2) either F is continuous or
(3) U has the following properties
(i) if a non-decreasing sequence {xn} in U converges to some point x ∈ U , then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} in U converges to some point y ∈ U , then y ≤ yn for all n.
If there exist two elements x0, y0 ∈ U with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled fixed

point in U .

Remark 3.6. Corollary 3.5 also generalizes Theorem 2.1 of [2] from complete partial metric spaces to
partially ordered complete partial metric spaces.

If we take a1 = a2 = k and a3 = a4 = 0 where k ∈ (0, 1) in Corollary 3.3, then we have the following
result.
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Corollary 3.7. Let (U, p,≤) be a partially ordered complete partial metric space. Suppose that the mapping
F : U × U → U satisfies the following conditions:

(1)

p(F (x, y), F (u, v)) ≤ k

2
[p(x, u) + p(y, v)], (67)

for all x, y, u, v ∈ U , where k ∈ (0, 1) is a constant,
(2) either F is continuous or
(3) U has the following properties
(i) if a non-decreasing sequence {xn} in U converges to some point x ∈ U , then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} in U converges to some point y ∈ U , then y ≤ yn for all n.
If there exist two elements x0, y0 ∈ U with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled fixed

point in U .

Remark 3.8. Corollary 3.7 extends and generalizes Theorem 2.1 and Theorem 2.2 of [5] from partially
ordered complete metric spaces to partially ordered complete partial metric spaces.

Remark 3.9. Corollary 3.7 also generalizes Corollary 2.2 of [2] from complete partial metric spaces to
partially ordered complete partial metric spaces.

Now, we consider some additional conditions to ensure the uniqueness of a coupled fixed point in the
setting of partially ordered complete partial metric spaces. Moreover, we study appropriate conditions to
ensure that for a coupled fixed point (x, y) we have x = y.

Notice that if (U,≤) is a partially ordered set, we endow the product space U ×U with the partial order
relation given by

(u, v) ≤ (x, y) ⇔ x ≥ u and y ≤ v.

We say that two pairs (f, g) and (u, v) are comparable, that is, every pair of elements has either a lower
bound or an upper bound.

Theorem 3.10. In addition to the hypotheses of Theorem 3.1, suppose that, for every (a, b), (c, d) ∈ U ×U ,
there exists a pair (u, v) ∈ U × U such that (u, v) is comparable to (a, b) and (c, d). Then F has a unique
coupled fixed point. Moreover p(a, a) = 0.

Proof. Suppose that (x, y) and (z, t) are coupled fixed points of F , that is, x = F (x, y), y = F (y, x),
z = F (z, t) and t = F (t, z).

Let (u, v) be an element of U ×U comparable to both (x, y) and (z, t). Suppose that (x, y) ≥ (u, v) (the
proof is similar in other cases). We consider the following two cases.

Case I. If (x, y) and (z, t) are comparable, then we have

p(x, z) = p
(
F (x, y), F (z, t)

)
≤ ψ

(
∆F (x, y, z, t)

)
− φ

(
∆F (x, y, z, t)

)
,

where

∆F (x, y, z, t) = max
{
p(x, z), p(y, t), p(x, F (x, y)), p(y, F (y, x))

}
= max

{
p(x, z), p(y, t), p(x, x), p(y, y)

}
= max

{
p(x, z), p(y, t)

}
.
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Using in the above inequality and using the property of ψ, φ, we obtain

p(x, z) ≤ ψ
(
max

{
p(x, z), p(y, t)

})
−φ

(
max

{
p(x, z), p(y, t)

})
< ψ

(
max

{
p(x, z), p(y, t)

})
< max

{
p(x, z), p(y, t)

}
.

Similarly, we have

p(y, t) = p
(
F (y, x), F (t, z)

)
≤ ψ

(
∆F (y, x, t, z)

)
− φ

(
∆F (y, x, t, z)

)
,

where

∆F (y, x, t, z) = max
{
p(y, t), p(x, z), p(y, F (y, x)), p(x, F (x, y))

}
= max

{
p(x, z), p(y, t), p(y, y), p(x, x)

}
= max

{
p(x, z), p(y, t)

}
.

Using in the above inequality and using the property of ψ, φ, we obtain

p(y, t) ≤ ψ
(
max

{
p(x, z), p(y, t)

})
−φ

(
max

{
p(x, z), p(y, t)

})
< ψ

(
max

{
p(x, z), p(y, t)

})
< max

{
p(x, z), p(y, t)

}
.

It follows that

max
{
p(x, z), p(y, t)

}
< max

{
p(x, z), p(y, t)

}
,

which is a contradiction. Hence, max
{
p(x, z), p(y, t)

}
= 0, that is, p(x, z) = 0 and p(y, t) = 0 and so x = z,

y = t. This shows the uniqueness of coupled fixed point.
Case II. Suppose now that (x, y) and (z, t) are not comparable, then there exists an element (u, v) ∈ U×

U is comparable to both (x, y) and (z, t). Now, since by iteration Fn(x, y) = x, Fn(y, x) = y, Fn(z, t) = z,
Fn(t, z) = t, Fn(u, v) = u and Fn(v, u) = v, we have

p
((x

y

)
,

(
z

t

))
= p

((Fn(x, y)

Fn(y, x)

)
,

(
Fn(z, t)

Fn(t, z)

))
≤ p

((Fn(x, y)

Fn(y, x)

)
,

(
Fn(u, v)

Fn(v, u)

))
+p

((Fn(u, v)

Fn(v, u)

)
,

(
Fn(z, t)

Fn(t, z)

))
≤ ψ

(
∆F (x, y, u, v)

)
− φ

(
∆F (x, y, u, v)

)
+ψ

(
∆F (y, x, v, u)

)
− φ

(
∆F (y, x, v, u)

)
+ψ

(
∆F (u, v, z, t)

)
− φ

(
∆F (u, v, z, t)

)
+ψ

(
∆F (v, u, t, z)

)
− φ

(
∆F (v, u, t, z)

)
.
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where

∆F (x, y, u, v) = max
{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
= max

{
p(x, u), p(y, v), p(x, x), p(y, y)

}
= 0.

Similarly,
∆F (y, x, v, u) = 0, ∆F (u, v, z, t) = 0 and ∆F (v, u, t, z) = 0.

Using this in the above inequality and the property of ψ, φ, we obtain

p
((x

y

)
,

(
z

t

))
= 0.

Thus, x = z and y = t. Hence, the coupled fixed point of F is unique. This completes the proof.

Theorem 3.11. In addition to the hypotheses of Theorem 3.1, suppose that x0, y0 in U are comparable,
then the coupled fixed point (x, y) ∈ U × U satisfies x = y. Moreover p(a, a) = 0.

Proof. Recall that x0 ∈ U is such that x0 ≤ F (x0, y0). Now, if x0 ≤ y0, we claim that for all n ∈ N, xn ≤ yn.
Indeed, by the mixed monotone property of F ,

x1 = F (x0, y0) ≤ F (y0, x0) = y1.

Assume that xn ≤ yn for some n. Now, consider

xn+1 = Fn+1(x0, y0) = F
(
Fn(x0, y0), F

n(y0, x0)
)

= F (xn, yn) ≤ F (yn, xn) = yn+1.

Hence, xn ≤ yn for all n. Taking the limit as n→ ∞, we get

x = lim
n→∞

xn ≤ lim
n→∞

yn = y.

From the contractive condition (2), we get

p(x, y) = p(F (x, y), F (y, x))

≤ ψ
(
∆F (x, y, y, x)

)
− φ

(
∆F (x, y, y, x)

)
,

where

∆F (x, y, y, x) = max
{
p(x, y), p(y, x), p(x, F (x, y)), p(y, F (y, x))

}
= max

{
p(x, y), p(x, y), p(x, x), p(y, y)

}
= 0.

Using this in the above inequality and using the property of ψ, φ, we get p(x, y) = 0 and so x = y.
Similarly, if x0 ≥ y0, then it is possible to show xn ≥ yn for all n and that p(x, y) = 0. This completes

the proof.

Remark 3.12. Theorem 3.10 and Theorem 3.11 extend and generalize Theorem 2.4 and Theorem 2.6 of
[5] from partially ordered complete metric spaces to partially ordered complete partial metric spaces.

Example 3.13. Let U = [0, 1]. Then (U,≤) is a partially ordered set with a natural ordering of real
numbers. Let p : U × U → [0, 1] be defined by p(x, y) = |x − y| for all x, y ∈ U . Consider the mapping
F : U × U → [0, 1] defined by

F (x, y) =

{
x2−y2+1

3 , if x ≤ y,
1
3 , if x > y,

for all x, y ∈ U . Then
(1) (U, p) is a complete partial metric space since (U, ps) is complete;
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(2) F has the mixed monotone property;
(3) F is continuous;
(4) 0 ≤ F (0, 1) and 1 ≥ F (1, 0);
(5) there exist two control function ψ and φ such that

p
(
F (x, y), F (u, v)

)
≤ ψ

(
∆F (x, y, u, v)

)
− φ

(
∆F (x, y, u, v)

)
,

for all x, y, u, v ∈ U with x ≤ u and y ≥ v. Thus, by Theorem 3.1, F has a coupled fixed point. Moreover,
(13 ,

1
3) is the unique coupled fixed point of F .

Proof. The proofs of (1)− (4) are obvious.
For any x ≤ u and y ≥ v, we have

p(x, u) = u− x, p(y, v) = y − v.

The proof of (5) is divided into the following cases.
Case 1. If u ≤ v. In this case, x ≤ u ≤ v ≤ y, and so

F (x, y) =
x2 − y2 + 1

3
, F (u, v) =

u2 − v2 + 1

3
.

Hence, we get

p
(
F (x, y), F (u, v)

)
= p

(x2 − y2 + 1

3
,
u2 − v2 + 1

3

)
=

1

3
(u2 − v2 − x2 + y2) ≤ 1

3
max

{
u2 − x2, y2 − v2

}
≤ 1

3
max

{
u− x, y − v

}
=

1

3
max

{
p(x, u), p(y, v)

}
≤ 1

3
max

{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
.

Case 2. If u > v. In this case, x ≤ u ≤ y, and so

F (x, y) =
x2 − y2 + 1

3
, F (u, v) =

1

3
.

Hence, we get

p
(
F (x, y), F (u, v)

)
= p

(x2 − y2 + 1

3
,
1

3

)
=

1

3
(y2 − x2)

≤ 1

3
(y2 − x2 + u2 − v2) ≤ 1

3
max

{
u2 − x2, y2 − v2

}
≤ 1

3
max

{
u− x, y − v

}
=

1

3
max

{
p(x, u), p(y, v)

}
≤ 1

3
max

{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
.

Case 3. If x > y. In this case, u ≤ v ≤ y, and so

F (x, y) =
1

3
, F (u, v) =

u2 − v2 + 1

3
.

Hence, we get

p
(
F (x, y), F (u, v)

)
= p

(1
3
,
u2 − v2 + 1

3

)
=

1

3
(u2 − v2)

≤ 1

3
(u2 − v2 + y2 − x2) ≤ 1

3
max

{
u2 − x2, y2 − v2

}
≤ 1

3
max

{
u− x, y − v

}
=

1

3
max

{
p(x, u), p(y, v)

}
≤ 1

3
max

{
p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x))

}
.
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Thus, in all the above cases, the condition (5) is satisfied for the control functions ψ(t) = t and φ(t) = 2
3 t

for all t > 0. Since U = [0, 1] is a totally ordered set, by Theorem 3.11, (13 ,
1
3) is the unique coupled fixed

point of F .

4. An application to the Volterra type integral equations

The following system of Volterra type integral equations:

x(t) = h(t) +

∫ T

0
λ(t, s)[f(s, x(s)) + g(s, y(s))]ds,

y(t) = h(t) +

∫ T

0
λ(t, s)[f(s, y(s)) + g(s, x(s))]ds, (68)

where the space U = C([0, T ],R) of continuous functions defined in [0, T ]. Define p : U × U → [0,+∞) by

p(x, y) = max
t∈[0,T ]

|x(t)− y(t)|, (69)

for all x, y ∈ U . Then (U, p) is a complete partial metric space.
Let U = C([0, T ],R) with the natural partial order relation, that is, x, y ∈ C([0, T ],R),

x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0, T ].

Theorem 4.1. Assume the following conditions are hold:
(1) the mappings f, g : [0, T ]× R → R are continuous;
(2) h : [0, T ] → R is continuous;
(3) λ : [0, T ]× R → R is continuous;
(4) there exists b > 0 and k is a nonnegative constant with 0 ≤ k < 1, such that for all x, y ∈ U , x ≤ y,

0 ≤ f(s, y)− f(s, x) ≤ b
k

2
(y − x),

0 ≤ g(s, y)− g(s, x) ≤ b
k

2
(y − x);

(5)

b max
t∈[0,T ]

∫ T

0
|λ(t, s)|ds ≤ 1,

(6) there exist u0, v0 ∈ U such that

u0(t) ≥ h(t) +

∫ T

0
λ(t, s)[f(s, u0(s)) + g(s, v0(s))]ds,

v0(t) ≤ h(t) +

∫ T

0
λ(t, s)[f(s, v0(s)) + g(s, u0(s))]ds.

Then, the system of Volterra integral equation (68) has a unique solution in U × U with U = C([0, T ],R).

Proof. Define the mapping F : U × U → U by

F (x, y)(t) = h(t) +

∫ T

0
λ(t, s)[f(s, x(s)) + g(s, y(s))]ds, (70)

for all x, y ∈ U and t ∈ [0, T ].
From assumption (4), clearly F has mixed monotone property.
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For x, y, u, v ∈ U with x ≥ u and y ≤ v, we have

p(F (x, y), F (u, v)) = max
t∈[0,T ]

|F (x, y)(t)− F (u, v)(t)|

= max
t∈[0,T ]

∣∣∣h(t) + ∫ T

0
λ(t, s)[f(s, x(s)) + g(s, y(s))]ds

−
(
h(t) +

∫ T

0
λ(t, s)[f(s, u(s)) + g(s, v(s))]ds

)∣∣∣
= max

t∈[0,T ]

∣∣∣ ∫ T

0
λ(t, s)[f(s, x(s))− f(s, u(s))

+g(s, y(s))− g(s, v(s))]ds
∣∣∣

≤ max
t∈[0,T ]

∫ T

0

(∣∣f(s, x(s))− f(s, u(s)
∣∣

+
∣∣g(s, y(s))− g(s, v(s))

∣∣)|λ(t, s)|ds
≤ max

t∈[0,T ]

k

2
b

∫ T

0

(∣∣x(s)− u(s)
∣∣+ ∣∣y(s)− v(s)

∣∣)|λ(t, s)|ds
≤ k

2

(
max
t∈[0,T ]

∣∣x(t)− u(t)
∣∣+ max

t∈[0,T ]

∣∣y(t)− v(t)
∣∣)×(

b max
t∈[0,T ]

∫ T

0
|λ(t, s)|ds

)
≤ k

2

(
max
t∈[0,T ]

∣∣x(t)− u(t)
∣∣+ max

t∈[0,T ]

∣∣y(t)− v(t)
∣∣)

=
k

2
[p(x, u) + p(y, v)],

where 0 ≤ k < 1.
So that

p(F (x, y), F (u, v)) ≤ k

2
[p(x, u) + p(y, v)],

a contractive condition in Corollary 3.7. Thus F has a coupled fixed point in U , that is, the system of
Volterra type integral equation has a solution. Finally, let (x, y) be a coupled lower and upper solution of
the integral equation (68), then by assumption (6) of the Theorem 4.1, we have x ≤ F (x, y) ≤ F (y, x) ≤ y.
Corollary 3.7 gives us that F has a coupled fixed point, say (α, β) ∈ U ×U . Since x ≤ y, Theorem 3.11 says
us that α = β and this implies α = F (α, α) and α is the unique solution of the integral equation (68).

The aforesaid application is illustrated by the following example.

Example 4.2. Let U = C([0, 1],R). Now consider the integral equation in U as

F (x, y)(t) =
t3 + 7

4
+

∫ 1

0

s2

24(t+ 3)

[
x(s) +

2

y(s) + 3

]
ds. (71)

Then clearly the above equation is in the form of following equation:

F (x, y)(t) = h(t) +

∫ T

0
λ(t, s)[f(s, x(s)) + g(s, y(s))]ds,

for all x, y ∈ U and t ∈ [0, T ], where

h(t) =
t3 + 7

4
, λ(t, s) =

s2

24(t+ 3)
, f(s, t) = s, g(s, t) =

2

s+ 3
and T = 1.
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That is, equation (71) is a special case of equation (68).
Here it is easy to verify that the functions h(t), λ(t, s), f(s, t) and g(s, t) are continuous. Moreover, there

exist b = 9 and k = 1
2 with 0 < k < 1 such that

0 ≤ f(s, y)− f(s, x) ≤ b
k

2
(y − x),

0 ≤ g(s, y)− g(s, x) ≤ b
k

2
(y − x);

for all x, y ∈ R with y ≥ x and s ∈ [0, 1] and

b max
t∈[0,T ]

∫ T

0
λ(t, s)ds = 9 max

t∈[0,1]

∫ 1

0

s2

24(t+ 3)
ds

= 9 max
t∈[0,1]

{ 1

72(t+ 3)

}
< 1.

Thus the conditions (1)-(5) of Theorem 4.1 are satisfied.
Now consider u0(t) = 1 and v0(t) = 1. Then we have

h(t) +

∫ T

0
λ(t, s)[f(s, v0(s)) + g(s, u0(s))]ds

=
t3 + 7

4
+

∫ 1

0

s2

24(t+ 3)

[
1 +

2

4

]
ds

=
t3 + 7

4
+

1

48(t+ 3)
≥ 1.

That is, v0 ≤ F (v0, u0). Similarly, it can be shown that u0 ≥ F (u0, v0).
Thus all the conditions of Theorem 4.1 are satisfied. It follows that the integral equation (71) has a

solution in U × U with U = C([0, 1],R).

5. Conclusion

In this work, we examine coupled fixed point solutions for contractive type conditions involving control
functions in the context of partial metric spaces that are partially ordered. Furthermore, we show some im-
plications of the established results, as well as an example to support the established results. An application
of the Volterra integral equation is also provided. Our findings expand and generalize several previously
published results from the literature.
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