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Abstract

In this paper, we consider notions of convergence weaker than one with a norm. We call them delta-
convergence and dual-delta-convergence, and we investigate the sequential compactness. As an application,
we prove a fixed point approximation theorem with the Krasnosel’skii type iterative scheme.
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1. Introduction

Fixed point theory is one of the fundamental theories for applied mathematics. It has been investigated
by many researchers on functional spaces such as Hilbert spaces or Banach spaces. Recently, some fixed
point problems are discussed on a geodesic metric space which has curvature bounded above. Such a space
is called a CAT(k) space. When the parameter « is positive, particularly, when it equals 1, the space has
many effective properties that the unit sphere on the three dimensional Euclidean space has. In CAT(1)
spaces, for instance, there is the following result:

Theorem 1.1 (Espinola—Ferndndez-Leén [2]). Let X be a complete CAT(1) space such that
diamn X < 7.

Then, a nonexpansive mapping on X has a fixed point.
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In general geodesic spaces, there is not a concept of the usual weak convergence. Hence, for example, we
cannot consider weak compactness of a subset. However, Lim [9] introduced delta-convergence as a notion of
weak convergence on a metric space. Further, Kirk and Panyanak [5] applied it to investigate a fixed point
problem on CAT(0) spaces in the manner of Hilbert spaces. In a CAT(1) space, we know the following:

Theorem 1.2 (Espinola—Fernandez-Leén [2]). Let X be a complete CAT(1) space and {x,} a sequence of
X such that .

inf limsup d(y, z,) < =.

yeX n—oo 2

Then, {x,} has a A-convergent subsequence.

Delta-convergence works well in many situations such as infinite dimensional cases, and it can be defined
on a general metric space.

In this work, we deal with a notion of convergence on the unit sphere of a Banach space which is similar
to the delta-convergence on CAT(k) spaces. On Banach spheres, we cannot define a distance in the usual
sense. Namely, in the case of a Hilbert space H, we define a spherical distance d on the unit sphere Sy by

d(x,y) = arccos (x, y)

for z,y € Sy. Here, (z,y) means the inner product of x and y. From this reason, we need to devise the
definition of a spherical metric. The authors [4] have defined a spherical metric on a Banach spheres using
a bounded linear functional and the dual sphere, and they proved a fixed point theorem and a fixed point
approximation theorem. Using this spherical metric, we investigate delta-convergence on Banach sphere in
this work.

2. Preliminaries

Let X be a nonempty set and 17" a mapping on X. We denote the set of all fixed point of T by Fix T,
namely
FixT={z € X |z =Tz}

In this paper, we always consider real linear spaces. Let E be a Banach space and E* a dual space of
E. We say that a sequence {z,} of E is convergent strongly if it is convergent with its norm. We denote
the value of y* € E* at x € E by (z,y*). Let

Sp={ze E||z| =1}
be its unit sphere. The duality mapping J on E is defined by

Jr = {x* e FE*

2 2
(w,a%) = [l = 2" |}

for x € E. We know that Jx is a nonempty bounded closed convex subset of E* for z € E and JOg = {0g-}.
Further, JSg = Sg+, where Sg+ is unit sphere of E*.
Let F be a Banach space. FE is said to be strictly convex if x = y whenever

|z + yl| =2
for x,y € Sg. Further, we say that F is uniformly convex if
lim ||z, —yn|| =0
n—oo

whenever
lim ||z, + ynl| = 2
n—oo
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for two sequences {z,,} and {y,} of Sg. F is said to be smooth if the limit

ety — e
t—0 t

exists for x,y € Sg. The norm of F is said to be Fréchet differentiable if the limit is attained uniformly for
y € Sg for fixed x € Sg. It is said to be uniformly smooth if the limit is attained uniformly for x,y € Sg.
We know the following properties of ' and J:

e If F is uniformly convex, then it is reflexive and strictly convex;
e if F is uniformly smooth, then its norm is Fréchet differentiable;
e if E has the Fréchet differentiable norm, then it is smooth;

e I is smooth if and only if J is single-valued, and then

-z tyl =l
1 —_
fy : J2)

for x,y € Sg;
e if E is smooth, then F is strictly convex if and only if J is injective;
e if F is smooth, then FE is reflexive if and only if J is surjective;
e if the norm of FE is Fréchet differentiable, then J is norm-to-norm continuous;
e if F' is uniformly smooth, then J is uniformly norm-to-norm continuous on any bounded set;
e if F is reflexive, then F is strictly convex if and only if £* is smooth;

e if F is reflexive, then F is smooth if and only if E* is strictly convex;

E is uniformly convex if and only if E* is uniformly smooth;

FE is uniformly smooth if and only if £* is uniformly convex.

For more details about Banach spaces, refer to [10] for instance.
In what follows, we introduce some notions about Banach spheres. For more details, see [4]. We know
that

[z, )| < lllllly™]l =1
for (z,y*) € Sg x Sg+. We define a function p from Sg x Sg~ to [0, 7] by

p(x,y*) = arccos (z, y™)
for (z,y*) € Sgp x Sg+. Then, the following hold:
e For (z,y*) € Sg x Sg=, p(z,y*) > 0;
e if E is smooth and strictly convex, then x =y if and only if p(z, Jy) = 0 for z,y € Sg.

Here, J is the duality mapping on E. Notice that the function p is similar to a usual spherical metric defined
on the unit sphere of Hilbert spaces, although its domain is not Sg x Sg but Sg x Sg«; obviously, it satisfies
no symmetry unless F is a Hilbert space.
Let E be a Banach space. Then, tx + (1 — t)y # Op for z,y € Sg with z # —y and ¢ € [0,1]. Now, we
can define a notion of convex combination on Banach spheres. For z,y € S with  # —y and ¢ € [0, 1], set
tr+ (1 —t)y
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Theorem 2.1 (Kimura—Sudo [4]). Let E be a Banach space. Then,

w  tcosp(x,z*)+ (1 —t)cosp(y,z*)
cospltr & (=1 = e+ =0yl

for z,y € Sp with x # —y, z* € Sp~ and t € [0,1].

Let E be a smooth Banach space and J the duality mapping on E. Let X be a nonempty subset of Sg.
We say that X is admissible [4] if
(x,Jy) >0

for z,y € X. Notice that X is admissible if and only if

o

plz, Jy) <
for =,y € X. Moreover, we say that X has the nonnegative functional property [4] if

inf (z.Jy) >0
mE‘eX@’ y) >0,

or equivalently,
7
sup p(z, Jy) < 3.
z,yeX

If X is admissible, then it has the nonnegative functional property.
The following is an example of a closed subset of a Banach sphere having the nonnegative functional

property:

Example 2.2 (Kimura—Sudo [4]). Let p > 1 and let ¢ = p/(p — 1). Let P and ¢? be the Lebesgue real
sequence spaces. Then, (¢P)* = (7 and they are smooth Banach spaces. Then, we know that

Jr = ( Lk |l‘k|p/q>
||

for any x = (z)) € Sgp, where J is the duality mapping on /P. Let
X = {(.I'k) € Sy ’Vk’ eN, z > 0}.

Then, we know that X is closed, and it has the nonnegative functional property. It is obvious that (z, Jy) > 0
for any x,y € X. In addition, letting x = (1,0,0,...) and y = (0,1,0,...), we have (z, Jy) = 0.

Lemma 2.3 (Kimura-Sudo [4]). Let E be a smooth Banach space. Let X be a nonempty subset of Sg.
Then, the following hold:

(i) If X has the nonnegative functional property, then x # —y for x,y € X;

(ii) if E is reflexive and strictly convezx, and X is admissible, then JX is admissible, where J is the duality
mapping on E;

(iii) if E is reflexive and strictly convex, and X has the nonnegative functional property, then JX has the
nonnegative functional property.

Let E be a Banach space and C' a subset of Sg. We say that C' is spherically convex if
trd(1—-t)yeC

for x,y € C with x # —y and t € [0, 1]. The intersection of spherically convex subsets is spherically convex.
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Let E be a smooth and uniformly convex Banach space. Let C be a nonempty, closed and spherically
convex subset of Sg. For x € Sg, we denote the value

inf p(y, J
;gcp(y, )

by p(C, Jz), where J is the duality mapping on E. Let
D= {m € Sk ‘ p(C, Jx) < g}

Then, for x € D, there is a unique point u, € C' such that
p(ug, Jx) = inf p(y, Jx) = arccos | sup (y, Jz) |.
yel yeC

We call such a mapping Ilo: x — u; a spherical projection onto C. Note that Fix Il = C. In what follows,
instead of D, we denote Dom I1.

To describe the geometrical properties of Sg and related mappings, we often need assumptions concern-
ing the size of subsets of Sg. The nonnegative functional property is a more adequate assumption than
admissibility for some cases.

Theorem 2.4 (Kimura-Sudo [4]). Let E be a smooth and uniformly convex Banach space. Let C be a
nonempty, closed and spherically conver subset of Sg having the nonnegative functional property, and Ilc
a spherical projection onto C'. Then,

cos p(u, JIcx) cos p(Ilcx, Jx) > cos p(u, Jx)
for x € Dom Il and w € C. Particularly,
plu, Jlcx) < p(u, Jx)

for x € Dom Ilg and u € C.

3. Cauchy sequences on Banach spheres

In this section, we consider convergence of a sequence on Banach spheres. The following fact is well
known, and plays an important role for the main results in this section:

Theorem 3.1 (Ibaraki-Kimura [3]). Let E be a uniformly smooth and uniformly convexr Banach space.

Then, there exist continuous, strictly increasing and convex functions g, and g, such that g (0) =g;(0) =0
and that

g, (lz —yl) <2 —=2(z, Jy) < g1 (lx — yll)
for x,y € Sg, where J is the duality mapping on E.

Now, we obtain the following;:

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {x,} be a sequence of Sg. Then, the following are equivalent:

(i) The sequence {xy} is a Cauchy sequence of E;
(i) there exists a nonnegative real sequence {3,} converging to 0 such that
P(Zm; J2n) < B

for m,n € N with m > n;
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(iii) there exists a nonnegative real sequence {vy,} converging to 0 such that

P(l'na JfUm) < Vn
for m,n € N with m > n.

Proof. We first suppose (i) and show (ii). Since {x,} is a Cauchy sequence of E, there exists a nonnegative
real sequence {ay,} converging to 0 such that

[Zm — Tal| < an

for myn € N with m > n. Fix m,n € N with m > n. For details about the equivalent condition to
the Cauchy sequences, see [11]. By Theorem 3.1, we can find a continuous, strictly increasing and convex
function g, such that g,(0) = 0, and that

2 = 2w, Jrn) < G1(|om — 2nll) < 91(an),

and hence B
91(an) _

cos plam, Jn) > 1 - I

Therefore, we obtain

p(Zm, Jry) < arccos <1 — 91(20[”)>

It means that (ii) holds.
We next assume (ii) and deduce (iii). Then, there exists a nonnegative real sequence {3, } converging to
0 such that

P(&m; J2n) < B

for m,n € N with m > n. Fix m,n € N with m > n. By Theorem 3.1, we can find a continuous, strictly
increasing and convex function g, such that gl(O) = 0, and that

gl(Ha:m —xpl]) <2 = 2(xpm, Jrn) = 2(1 — cos p(zm, Jx,)) < 2(1 — cos ),

and therefore
|Tm — xn|| < 31’1(2(1 —cos fBp))-
Now, again By Theorem 3.1, we can find a continuous, strictly increasing and convex function g; such that
71(0) =0, and that
2 = 2{xp, Jrm) < Gy(llzn — 2ml) < G1(g, " (2(1 — cos £a))),
and hence B .
91(g, " (2(1 — cos Bn)))

cos p(xp, Jxm) > 1 — 5

It implies that

1(g, " (2(1 — cos Bn)))
p(xn, Jxm) < arccos (1 - 1 5 )’

which means that (iii) holds.
We finally suppose (iii) and show that (i) holds. Then, there exists a nonnegative real sequence {v,}
converging to 0 such that

for m,n € N with m > n. Fix m,n € N with m > n. By Theorem 3.1, we can find a continuous, strictly

increasing and convex function g, such that 31(0) =0, and that

9,([[Tn — zml) <2 =2(zn, Jom) =2 — 208 p(Tn, JT1m) <2 —2co87,
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and therefore
ln — ]l < 9,7 (2 2cos 7).

Hence, (iii) implies (i). Consequently, (i), (ii) and (iii) are equivalent to each other. O
In the same fashions of the previous theorem, we also obtain the following;:

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {x,} be a sequence of Sg and xog € Sg. Then, the following are equivalent:

(i) The sequence {x,} converges strongly to xo;
(ii) a real sequence {p(xn, Jxo)} converges to 0;
(iii) a real sequence {p(xo, Jzy)} converges to 0.

Theorem 3.4. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {x,} and {yn} be sequences of Sg. Then, the following are equivalent:

(i) A real sequence {||x, — yn||} converges to 0;

(ii

)

(i) a real sequence {||Jxn — Jyn||} converges to 0;
) a real sequence {p(xy, Jy,)} converges to 0;
)

(iv) a real sequence {p(yn, Jxn)} converges to 0.

4. Asymptotic centres of a sequence on a Banach sphere

Let E be a smooth, reflexive and strictly convex Banach space. Let {z,,} be a sequence of Sp. We call
z € Sg an asymptotic centre of {x,} if

liminf (z, Jz,) = sup liminf (y, Jz,),

and call z* € Sg a dual-asymptotic centre of {z,} if

liminf (x,,2") = sup liminf (z,,y").
n—oo y*ESE* n—oo

We denote the set of all asymptotic centres of {x,} by

AC({z,}) = {x € Sg

lirginf (x,Jxy) = sup liminf (y, an>},

yESE n—oo

and denote the set of all dual-asymptotic centres of {z,} by

AC ({zn}) = {x € Spe

liminf (x,,2*) = sup liminf (xn,y*>}
n—oo

y*ESE* n—oo

Example 4.1. Let ¢ and ¢? be the Lebesgue real sequence spaces such as Example 2.2. Let {e,} be a
sequence of Sy such as

en = (0,0,...,0,1,0,...),

where the component 1 appears at the nth coordinate. It is obvious that {e,} is not convergent strongly.
Then, for n € N,
Je, = e, € 9.
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Let y € Sgr be an arbitrary point. Then, there exists {a,} such that

o0
Yy = Z a;€;
i=1
and that Y °°. |a;|P = 1. Therefore, we have
=1

liminf (y, Je,) = liminf a,(e,, Je,) = liminf a,, = 0,

and hence AC({e,}) = Spr. We next define a sequence {x,,} of Sp by

z 16 @16 €1 t+ent1 €1+t enyr
P2 T e+ e 2

for n € N. It is obvious that {z,} is not convergent strongly. Let y* € Sy be an arbitrary point. Then,
there exists {a}} such that
o0
y' =D e
i=1

and that > 2, |af|? = 1. Therefore,

a

* a*
lim inf (x,, y*) = lim inf 1t enny) @ + lim inf 2 =

n—yo0 n—o0 W o {’@ n—00 {/ﬁ o {'/ﬁ’
and thus

- R
Bt e ) =5 = g Bt fon )

It means that AC*({z,}) = {e1}.
Now, we get the following lemma:

Lemma 4.2. Let E be a smooth, reflexive and strictly convex Banach space. Let {x,} be a sequence of Sg.
Then,

AC({zn}) = AC*({Jzn})
and
C*({zn}) = AC{Jzn}).
Proof. Take x € AC({z,,}). Then,

lim inf (Jx,, z) = lim mf (x, Jxy) = sup liminf (y, Jx,) = sup liminf (Jx,,y).

It implies that

x € AC*({Jzyn}) = {:E** € Sg

liminf (Jz,,2**) = sup liminf (an,y**>},

— 00 y**GSE n—oo

and hence AC({z,}) C AC*({Jx,}). Conversely, let 2** € AC*({Jx,}). Then,

liminf (2™, Jx,) = liminf (Jx,,2™) = sup liminf (Jx,,y™) = sup liminf (y**, Jz,),
n—oo n—oo y**esE n—oo y**esE n—oo

which implies that

e AC({z,}) = {x € Sk

liminf (x, Jz,) = sup liminf (y, Jacn)}

n—o0 yESE n—0o0
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and thus AC*({Jzy}) C AC({zy}). Therefore,

We also obtain
AC* ({zn}) = AC({Jzn}).

It completes the proof. O
We next prove the following:

Lemma 4.3. Let E be a smooth and uniformly convex Banach space. Let {x,} be a sequence of Sg such
that
sup liminf (y, Jx,) > 0.

yeSE n—oo

Then, {x,} has a unique asymptotic centre.

Proof. We define a real valued function g on Sg by

g(z) = liminf (z, Jz,,)

n—o0

for z € Sp. We remark that AC({z,}) coincides with the set of maximisers of g. Set

M = sup liminf (y, Jx,) €]0,1].
yGSE n—oo

Then, there exists a sequence {z;} of Sg such that

1
M >g(z)>M——.
i
Then, g(z;) — M as i — co. We first show that {z;} is a Cauchy sequence of E. We remark that for large
jO € Na
1
M- —>0.
Jo
Fix i,j € N with ¢ > j > jo. We show that z; # —z; by contradiction. Assume that z; = —z;. Then, we
have
0 < liminf (z;, Jz,) = liminf (—z;, Jz,) = —limsup (z;, Jx,) < 0

n—00 n—00 n—00

and thus this is a contradiction. Hence, since z; # —z;, we obtain

1 1 1 1 ; iJ
M > g(zi @ zj> = lim inf <2z,- ® -z, an> = liminf M

2 2 n—00 2 n—00 ||zi + Zj I
S liminf,, o0 (2, Jxp) + liminf,, o0 (25, Jzp) _ 9(zi) + 9(2j)
B 1z + 2| 1z + 2
M—it+M—j7t  2oAM -5
1z + 2 TR 2
Therefore, )
s 2y 2 22T

Now, we assume that {z;} is not a Cauchy sequence. Then, there is € > 0 such that for & € N with k£ > jo,
there exist i, jr € N with i, > ji > k such that

”zlk - ij” > E.
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In this way, we can take two subsequences {z;, } and {z;,} of {z;}. However, since

2(M — 5. ')

Hzlk +zij > M

for k € N with k£ > jo, we have
klggo HZZk + ij” =2.
From the uniformly convexity of E,
lim ”Z'Lk - ij” =0.
—00

This is a contradiction. Hence, {z;} is a Cauchy sequence of E. Let zy € E be its strong limit. We notice
that zp € Sk since Sg is closed. From the continuity of g, we obtain g(z9) = M and hence zj is a maximiser
of g.

Let zp, 2z, € X be maximisers of g. We know that zp # —z(. Then,

1 1 1 1 0,J ! 2M
M Zg(zo@ zé) :llmlnf<20@2/0,J$n> — liminf (ZO+ZO7 /CUn) > 9(20)+QI(ZO) _ ;
2772 n—oo \2 2 noolzo + z 120 + 2 [l20 + 2
and therefore ||zg + z{|| = 2. Since E is strictly convex, we have zyp = z{. It means that g has a unique
maximiser. 0

Lemma 4.4. Let E be a uniformly smooth and strictly convex Banach space. Let {x,} be a sequence of Sg
such that

sup liminf (z,,y*) > 0.
y*GSE* n—oo

Then, {xy} has a unique dual-asymptotic centre.

Proof. We know that AC*({z,,}) = AC({Jzy}) and the dual E* of E is smooth and uniformly convex. Let
J* is the duality mapping on E*. Since

sup liminf (y*, J*Jx,) = sup liminf (z,,y*) > 0,

we obtain the desired result from Lemma 4.3. O

Theorem 4.5. Let E be a uniformly smooth and uniformly conver Banach space. Let C be a nonempty,
closed and spherically convex subset of Sg having the nonnegative functional property. Let {x,} be a sequence
of C' such that

sup liminf (z,,y*) > 0.
y*GSE* n—oo

Then, J=* AC*({xy}) is included in C.

Proof. Let {zo} = J=1 AC*({x,,}). Let IIc be a spherical projection onto C. Then, since

sup (y, Jxg) > liminf (z,,, Jzg) = sup liminf (x,,y") > 0,
yEC’ n—oo y*ESE* n—oo

we have .
p(Ca Jx()) < 5
and thus x¢p € Dom Ilx. From the property of the spherical projection, since

p(xn, Jlcxg) < p(ay, Jxo)
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for n € N, we have
lim sup p(z, JHcxo) < limsup p(zy,, Jxo)

n—oo n—oo
and therefore

liminf (z,, JIIcxg) > liminf (z,, Jxo).

Since AC*({xy}) consists of one point, we get ¢ = IIcxzg € C. O
We obtain the following in the same fashion of the previous theorem:

Theorem 4.6. Let E be a uniformly smooth and uniformly conver Banach space. Let C be a nonempty,
closed subset of Sg such that it has the nonnegative functional property and JC' is spherically convex. Let
{zn} be a sequence of C such that

sup liminf (y, Jx,) > 0.

yGSE n—oo

Then, AC({zy}) is included in C.

5. Delta-convergence on a Banach sphere

Let E be a smooth, reflexive and strictly convex Banach space. Let {x,} be a sequence of Sg and z¢ € Sg.
We say that {z,} delta-converges to a delta-limit x¢ if {xo} = AC({zy,}) for any subsequence {zy,} of {z,}.
Moreover, we say that {x,} dual-delta-converges to a dual-delta-limit xq if {zo} = J* AC*({z,,}) for any
subsequence {xy, } of {x,}.

The original definition of delta-convergence was defined by Lim [9] in the setting of metric spaces. Our
definition above differs slightly from the original definition since the asymptotic centre of a sequence is
defined by the dual pairing instead of the metric.

Theorem 5.1. Let E be a smooth and uniformly convex Banach space. Let {x,} be a sequence of Sg
converging strongly to xy € Sg. Then, {x,} delta-converges to x.

Proof. Take a subsequence {zy,} of {x,} arbitrarily. Then,

liminf (zg, Jp,) = (xo0, Jxo) = 1.
1—00
Thus, since
liminf (y, Ja,,) <1 =liminf (xg, Jz,,)

1—>00 1—>00
for y € Sg, we have
sup liminf (y, Jx,,) = liminf (xg, Jx,,) = 1.
yESE 1— 0 1—00

Thus, {xo} = AC({zp,}), which implies that {z,} delta-converges to xo. O

Theorem 5.2. Let E be a uniformly smooth and strictly convex Banach space. Let {x,} be a sequence of
Sg converging strongly to xo € Sg. Then, {x,} dual-delta-converges to xg.

Proof. Take a subsequence {x,,} of {z,} arbitrarily. Then,

liminf (z,,;, Jxo) = (20, J20) = 1.
1—00
Thus, since

liminf (x,,,y") < 1= liminf (x,,, Jzo)
1—00 1— 00

for y* € Sg+, we have
sup liminf (z,,,y") = liminf (x,,, Jxo) = 1.
y*ESpe 100 i—00

Thus, {Jzo} = AC*({zp,}), which implies that {z,} dual-delta-converges to xg. O
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Consequently, both notions of delta-convergence are weaker than strong convergence. We next show
that the following duality theorem:

Theorem 5.3. Let E be a smooth, reflexive and strictly convex Banach space. Let {x,} be a sequence of Sg
and o € Sg. Then, {x,} delta-converges to xo if and only if {Jx,} dual-delta-converges to Jxg. Further,
{zp} dual-delta-converges to xq if and only if {Jx,} delta-converges to Jxg.

Proof. Suppose that {z,} delta-converges to xo. For any subsequence {Jz,,} of {Jz,}, since
{zo} = AC({zn, }) = AC*({J 0, }),

we have {Jzo} = JAC*({Jxy,}). It means that {Jx,} dual-delta-converges to Jxg. Suppose that {Jx,}
dual-delta-converges to Jxzg. For any subsequence {zy,} of {z,}, since

{Jao} = JAC ({Jn, }) = JAC({wn, }),

we have {zo} = AC({xy,}). It means that {z,} delta-converges to xg. Consequently, {z,} delta-converges
to z¢ if and only if {Jx,} dual-delta-converges to Jxg. We can also prove that {x,} dual-delta-converges
to xg if and only if {Jz,} delta-converges to Jzo. O

Let E be a smooth, reflexive and strictly convex Banach space. Let {x,} be a sequence of Sg. We say
that {x,} is spherically bounded if
sup liminf (z, Jx,) > 0,

Z'ESE n—oo

or equivalently
inf limsup p(zx, Ja,) < g

TE€ESE n—oo

We further say that {z,} is dual-spherically bounded if

sup liminf (x,,z*) > 0,
$*ESE* n—oo
or equivalently

T
inf limsup p(z,, ") < —.
T*ESE* n*)OOp p( " ) 2

We next show that sequential delta-compactness of a spherically bounded sequence. To prove this, we
use the similar fashion to [1, Proposition 3.1.2].

Theorem 5.4. Let E be a smooth and uniformly convexr Banach space. Let {x,} be a spherically bounded
sequence of Sg. Then, {x,} has a delta-convergent subsequence.

Proof. Let J be the duality mapping on E. Set

ry = inf inf limsup p(x, Ju,) .

We take a subsequence {z.} of {z,} as

1
inf limsup p(z, Jxl) <r + T

2€SE n—oo

Further, set

2

inf < inf Iimsupp(:c,Ju%L)>.

T {ulYc{el} \2€S5 nseo
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Then, we can take a subsequence {22} of {zl} as

. . 1
inf limsup p(z, J22) < ro + .

2ESE n—oo 2

In this way, for a sequence {z*}, let

rpr1 =  inf < inf lim sup p(z, Juﬁ))

{uk}c{zk} \2€58 n—oo
and take a subsequence {zF*1} of {z*} as

1
inf limsup p(z, Jobt) <rppq + ——

x€ESE n—oo k+1 '
Then, {ry} is increasing and bounded above. Therefore, {r;} converges to some real number r. Now, we
take a subsequence {x,, } of {x,} as x,, = z§ for k € N. Fix i € N arbitrarily. For sufficiently large k € N,
{zn, } is a subsequence of {x},}. Thus,

rit1 < inf limsup p(z, Jz,, ).
T€SE  k—oo

Moreover, since

1
inf limsup p(z, Jz,, ) < rjg + ——,
z€SE k_mop o m) S Tig1 1+ 1
letting i — 0o, we obtain

inf limsup p(z, Jap,) =7
TESE koo

and thus .
r = inf limsupp(z, Jzy,,) < inf limsupp(z, Jz,) < 5

z€SE k—00 TESE n—oco

In the same way, for any subsequence {zn, } of {zn,}, we get

inf limsup p(z, Jay, ) =1 <
T€SE |00 !

oS

Let {zo} = AC({zn,}). Then, for any subsequence {an, } of {zn,}, we have

lim sup p(xg, Jzp, ) < limsup p(zg, Jx,,) = inf limsup p(z, Jx,,) =r = inf limsup p(z, Jz,, )
l—o0 ! k—o0 T€SE  k—oo T€SE |00 !

and thus {zo} = AC({zy,, }). It means that {zy,} delta-converges to zy € Sg. O

Theorem 5.5. Let E be a uniformly smooth and strictly convex Banach space. Let {x,} be a dual-spherically
bounded sequence of Sg. Then, {x,} has a dual-delta-convergent subsequence.

Proof. We show that {Jz,} has a delta-convergent subsequence. Since {z,} is dual-spherically bounded,

sup liminf (z*, J*Jx,) = sup liminf (z,,z*) >0
$*€SE* n—oo $*€SE* n—oo

and thus {Jx,} is spherically bounded. Note that E* is smooth and uniformly convex. From Theorem
5.4, {Jz,} has a delta-convergent subsequence {Jz,,}. Let z§ € Sg- be its delta-limit. Then, {z,,}
dual-delta-converges to J*z*. It completes the proof. OJ

At the end of this section, we obtain the following:
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Lemma 5.6. Let E be a smooth and uniformly conver Banach space. Let {x,} be a spherically bounded
sequence of Sg. Then, {x,} delta-converges to xy € Sg if and only if xo is a delta-limit of every delta-
convergent subsequence of {x,}.

Proof. Since the ‘only if’ part is obvious, we prove the ‘if’ part. Suppose that x is a delta-limit of every delta-
converging subsequence of {z,}. Take a subsequence {z,,} of {z,} arbitrarily and let {z} = AC({zy,}).
Here, we take a subsequence {:cm]} of {zp,} such that

lim <:L"0, $n1> = liminf (xg, zp,)
J—00 7 1—+00
and that {xnzj} is a delta-convergent sequence. From the assumption, x is its delta-limit. Then, we obtain
liminf (xg, z,,) = lim <x0,mni,> > liminf <z,:cnz> > liminf (2, zy,).
1—00 Jj—00 ] j—0o0 1 1—>00
Since z is a unique asymptotic centre of {z,,}, we obtain z = z¢ and thus {x,} delta-converges to zo. O
Lemma 5.7. Let E be a uniformly smooth and strictly convex Banach space. Let {x,,} be a dual-spherically

bounded sequence of Sg. Then, {x,} dual-delta-converges to xg € Sg if and only if xg is a dual-delta-limit
of every dual-delta-convergent subsequence of {xn}.

6. Applications to fixed point approximation

In this section, we prove a delta-convergence theorem for a spherically nonspreading mapping on a
Banach sphere.

Let £ be a smooth Banach space and X nonempty subset of Sp having the nonnegative functional
property. We call a mapping T from X into itself a spherically nonspreading mapping if

cos p(T'z, JTy) + cos p(Ty, JTx) > cos p(T'z, Jy) + cos p(Ty, Jx)

for x,y € X, where J is the duality mapping on E. A notion of nonspreadingness is first introduced
by Kohsaka and Takahashi [7] in Banach spaces, and generalised to geodesic space in [6]. For a nonempty
closed spherically convex subset C of X, the spherical projection Il from X NDom Il onto C' is spherically
nonspreading; see [4].

Lemma 6.1 (Kimura—Sudo [4]). Let E be a smooth Banach space and X nonempty, closed and spherically

convex subset of Sg having the nonnegative functional property. Let T be a spherically nonspreading mapping
on X. Then, the following hold:

e [is fixed point set FixT is closed and spherically convex;

e if T has a fized point, then
p(p, JTx) < p(p, Jx)
forx e X and p € FixT.

We first prove the following result corresponding to demiclosedness of a mapping:

Lemma 6.2. Let E be a uniformly smooth and strictly convex Banach space and X a nonempty, closed
and spherically conver subset of Sg having the nonnegative functional property. Let T be a spherically
nonspreading mapping on X. Then,

J*AC*({z,}) C FixT

for a dual-spherically bounded sequence {x,} of X such that
lim ||Jz, — JTz,| = 0.
n—oo

Here, J and J* are the duality mappings on E and E*, respectively.
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Proof. Since J* is uniformly norm-to-norm continuous on Sg+, we have

lim ||z, — Tz,| = 0.
n—oo

Let {w*} = AC*({x,}). Set w = J*w*. Since T is spherically nonspreading, for fixed n € N,

cos p(T'xp, JTw) + cos p(Tw, JTxy,) > cos p(Txy, Jw) + cos p(Tw, Jx,)

and hence
(Txp, JTw) > (Txy, Jw) + (Tw, Jr, — JTx,).
Note that
(Txp, JTw) = (Txy — 20, JTW) 4+ (Tp, JTW)
and

(Txp, Jw) = (Try — xp, Jw) + (zp, Jw).

Thus, we have
liminf (Tx,,, JTw) = liminf (z,,, JTw)

n—oo n—oo
and
liminf (T'z,, Jw) = liminf (z,, Jw).
Therefore,
liminf (z,,, JTw) = liminf (T'z,, JTw)
n—oo n—o0
> lini)inf (Txp, Jw) + (Tw, Jx, — JTxy))
= lim inf (T'x,,, Jw)
n—oo
= liminf (x,, Jw) = liminf (x,, w*).

n—oo n—oo

Since AC*({zy}) is a singleton, we have Jw = w* = JTw and therefore w € FixT, which implies that
J*AC*({z,}) C FixT. O

Lemma 6.3. Let E be a uniformly smooth and uniformly convex Banach space and X a nonempty, closed
and spherically convex subset of Sg having the nonnegative functional property such that JX is spherically
convezr. Let T be a spherically nonspreading mapping on X which has a fixed point. Let {ay} be a real
sequence of [0,1]. For an initial point x1 € X N Dom ITpix 7, define a sequence {x,} of X as follows:

J (anJzy, + (1 — ay)JTxy,)
lon Tz 4+ (1 — ) J Ty ||

Tpt1 = = J(anJr, ® (1 — ap)JTxy,)

forn € N. Then, a sequence {IIrixTxn} converges strongly to some xo € Fix T, where Ipix7 is a spherical
projection onto FixT.

Proof. Since 1 € Dom g,
. T
p(FixT, Jx1) = p(IIpix 721, J21) < 5
Further,

COs p(HFiXTxlv an-i—l) = COS p(HFiXTx17 anJry, @ (1 - an)JTxn)
> ap cos p(Ipixr21, JTn) + (1 — ay) cos p(Hpix 21, JTT)
> cos p(Ipix 721, JTy).
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Therefore,

. s
p(FixT, Jx,) < p(Ilpixrx1, Jon) < p(Irixrer, Jo1) < 5

It means that {z,} is included in Dom ITpix7 and hence a sequence {IIpix7x,} is well defined. In what
follows, we denote ITpix7 by II. We show that {IIx,} is a Cauchy sequence. Fix n € N. Then,

cos p(ITxp41, Jxny1) > cos p(llxp, Jrpi1) = cos p(Ilxy, anJr, G (1 — ay)JTxy,)
> oy, cos p(Ixy, Jxy) + (1 — ay) cos p(I zy, JTxy) > cos p(Ilxy,, Jxy,)

and thus
0 < (p,Jo1) < (Hxyp, Jxy) < (IIzpi1, Jrpsr) < 1.

It implies that {(IIx,,, Jx,)} is convergent and that there exists a nonnegative real sequence {c, } converging
to 0 such that
(Hxp,, Jom) — (Hxy, Jr,) = (T2, Jom) — (Hxp, Jon)| < ap

for m,n € N with m > n. Now, fix m,n € N with m > n arbitrarily. From the property of II, we get
cos p(lxp, JIxy,) cos p(IT Xy, Jxm) > cos p(Izy, Jz,,)

and thus

cos p(Ilxy,, Jxy) — cos p(Ilxy, JTm,) (U, Jxm) — (xyn, JTm)
ez, JII >1-— =1- :
cos p{ILn, J1wm) 2 cos p(IIxy,, Jxy,) (T xp, J )
Moreover, since

(Hxy, Jry,) = cos p(Ilzy,, Jx,) > cos p(llxy, Jr,) = (x,, Jz,),

we have
Hxy,, Jry,) — (Hx,, Jx
(Hxy, JH ) = cos p(llzy, JIxy,) >1— SLE <Hm$in7<]<$m>n m)

. (Hxpy, Jrm) — (xy, JT,)

- (Hzp,, Jxm)

1 [z, Jrm) — (Hxy, Jxy,)| >1__ On

(Hxp, JTm) - (p,Jx1)’
Then,
Qp
Hxy, JII < 1—

p(llzy, JHx,,) < arccos < . J:c1>)’
which implies that {IIz,} is a Cauchy sequence from Theorem 3.2, and therefore it converges strongly to
some zg € FixT. ]

Now we obtain a fixed point approximation theorem with the Krasnosel’skii type iterative scheme [8].
Before that, we give the following condition:

Let E be a smooth Banach space and J the duality mapping on . We say that J is sequentially
delta-continuous if a sequence {Jz, } delta-converges to Jxy whenever a spherically bounded sequence {x,,}
of Sg delta-converges to xg € Sg.

Theorem 6.4. Let E be a uniformly smooth and uniformly convexr Banach space and X a nonempty, ad-
missible, closed and spherically convex subset of Sg such that JX is spherically convex. LetT' be a spherically
nonspreading mapping on X which has a fized point. Assume that J is sequentially delta-continuous. For
an initial point x1 € X, define a sequence {x,} of X as follows:

J*(Jxn + JTxy,)
| Jxy + JT x|

1 1

Tp+l =
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forn € N. Then, {z,} delta-converges to a fized point

rog — lim UFiXTxn.
n—00

Proof. Since T is spherically nonspreading, for p € FixT', we have
1 1 1 1
cos p(p, Jpi1) = cos p( p, 5 Jan © 5 J Ty | 2 5 cos p(p, Jan) + 5 cos p(p, JTan) 2 cos p(p, Jay)

for n € N and hence a limit of {cos p(p, Jx,)} exists for all p € FixT, and the limit is positive. Moreover,
since

sup liminf (y, Jx,) > liminf (p, Jx,) > (p, Jz1) > 0,

the generated sequence {z,} is spherically bounded. Fix p € FixT and n € N arbitrarily. Then,

cos p(p, Jan) + cos p(p, JTn) _ 2cos p(p, Jan)

1 1
cos p(p, Jrni1) = COSp(n inn & 2JTatn> =

|Jxy + JT x| = [ Jxpn + JTxy|
and hence 5 J
i + T || > 205 TTn)
cos p(p, JTni1)
Thus,

2 cos p(p, Jzn)

2> ||Jxy + JTxy| >
cos p(p, JTp11)

— 2
as n — oo. From the uniformly convexity of E*,

|Jzpn — JTzy| = 0.

lim
n—0o0

Take a delta-convergent sequence {x,,} of {z,} and let w € X be its delta-limit. Then, from sequential
delta-continuity of J, a sequence {Jx,,} delta-converges to Jw. Since

{w} =T H{Jw} = T AC({Jan,}) = J7HAC ({an, }),

from Lemma 6.2, we have w € FixT. Note that from Lemma 6.3, a sequence {IIpix 72y} converges strongly
to zg € FixT'. Since

liminf (xg, Jx,) = iminf (xg + Hpix 720 — Hpix 7T, JTn)
= liminf (— (IIpix 7Ty — To, Jn) + (pix 7Ty, JTn))
n—oo
> lim inf (_”HFiXTSUn - xﬂ” + <HFiXT$na an>)
n—o0
= liminf (ITpix 7y, Jx,) > liminf (w, Jx,),

we get w = xg, which implies that {x, } delta-converges to zp. This is the desired result. O

Let H be a Hilbert space. Then, since the duality mapping on H is the identity mapping and AC({z,}) =
AC*({zy}) for a sequence {z,} of Sy, it is an example having the sequentially delta-continuous duality
mapping. However, we have not known that there is an infinite dimensional Banach space having the
non-trivial sequentially delta-continuous duality mapping yet. At the end of this section, we consider the
following example:
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Example 6.5. Let m € N and p > 1. We define a norm on R™ by

m 1/p
lzll = | D lawl”
k=1
for z = (z1,...,2m) € R™. We denote it by /™ and then it is a uniformly smooth and uniformly convex

Banach space. Moreover, for ¢ = p/(p—1) > 1, we have (¢7"™)* = (4™. Let J be the duality mapping on ¢/
and S be the unit sphere of /7. Take an arbitrary spherically bounded sequence {x,} of S delta-converging
to zg € S. Then, since S is bounded and closed, {z,} has a convergent subsequence. Let {z,,} be such a
sequence of {z,} and yp € S its limit. We remark that {xo} = AC({zy,}). Thus, {x,,} converges to zg.
Therefore, {Jx,,} converges to Jxzp and hence it delta-converges to Jxg. It means that J is sequentially
delta-continuous.
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