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Abstract

In this paper, we consider notions of convergence weaker than one with a norm. We call them delta-
convergence and dual-delta-convergence, and we investigate the sequential compactness. As an application,
we prove a fixed point approximation theorem with the Krasnosel’skii type iterative scheme.
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1. Introduction

Fixed point theory is one of the fundamental theories for applied mathematics. It has been investigated
by many researchers on functional spaces such as Hilbert spaces or Banach spaces. Recently, some fixed
point problems are discussed on a geodesic metric space which has curvature bounded above. Such a space
is called a CAT(κ) space. When the parameter κ is positive, particularly, when it equals 1, the space has
many effective properties that the unit sphere on the three dimensional Euclidean space has. In CAT(1)
spaces, for instance, there is the following result:

Theorem 1.1 (Esṕınola–Fernández-León [2]). Let X be a complete CAT(1) space such that

diamX <
π

2
.

Then, a nonexpansive mapping on X has a fixed point.
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In general geodesic spaces, there is not a concept of the usual weak convergence. Hence, for example, we
cannot consider weak compactness of a subset. However, Lim [9] introduced delta-convergence as a notion of
weak convergence on a metric space. Further, Kirk and Panyanak [5] applied it to investigate a fixed point
problem on CAT(0) spaces in the manner of Hilbert spaces. In a CAT(1) space, we know the following:

Theorem 1.2 (Esṕınola–Fernández-León [2]). Let X be a complete CAT(1) space and {xn} a sequence of
X such that

inf
y∈X

lim sup
n→∞

d(y, xn) <
π

2
.

Then, {xn} has a ∆-convergent subsequence.

Delta-convergence works well in many situations such as infinite dimensional cases, and it can be defined
on a general metric space.

In this work, we deal with a notion of convergence on the unit sphere of a Banach space which is similar
to the delta-convergence on CAT(κ) spaces. On Banach spheres, we cannot define a distance in the usual
sense. Namely, in the case of a Hilbert space H, we define a spherical distance d on the unit sphere SH by

d(x, y) = arccos ⟨x, y⟩

for x, y ∈ SH . Here, ⟨x, y⟩ means the inner product of x and y. From this reason, we need to devise the
definition of a spherical metric. The authors [4] have defined a spherical metric on a Banach spheres using
a bounded linear functional and the dual sphere, and they proved a fixed point theorem and a fixed point
approximation theorem. Using this spherical metric, we investigate delta-convergence on Banach sphere in
this work.

2. Preliminaries

Let X be a nonempty set and T a mapping on X. We denote the set of all fixed point of T by FixT ,
namely

FixT = {x ∈ X | x = Tx}.

In this paper, we always consider real linear spaces. Let E be a Banach space and E∗ a dual space of
E. We say that a sequence {xn} of E is convergent strongly if it is convergent with its norm. We denote
the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. Let

SE = {x ∈ E | ∥x∥ = 1}

be its unit sphere. The duality mapping J on E is defined by

Jx =
{
x∗ ∈ E∗

∣∣∣ ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2
}

for x ∈ E. We know that Jx is a nonempty bounded closed convex subset of E∗ for x ∈ E and J0E = {0E∗}.
Further, JSE = SE∗ , where SE∗ is unit sphere of E∗.

Let E be a Banach space. E is said to be strictly convex if x = y whenever

∥x+ y∥ = 2

for x, y ∈ SE . Further, we say that E is uniformly convex if

lim
n→∞

∥xn − yn∥ = 0

whenever
lim
n→∞

∥xn + yn∥ = 2
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for two sequences {xn} and {yn} of SE . E is said to be smooth if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for x, y ∈ SE . The norm of E is said to be Fréchet differentiable if the limit is attained uniformly for
y ∈ SE for fixed x ∈ SE . It is said to be uniformly smooth if the limit is attained uniformly for x, y ∈ SE .

We know the following properties of E and J :

� If E is uniformly convex, then it is reflexive and strictly convex;

� if E is uniformly smooth, then its norm is Fréchet differentiable;

� if E has the Fréchet differentiable norm, then it is smooth;

� E is smooth if and only if J is single-valued, and then

lim
t→0

∥x+ ty∥ − ∥x∥
t

= ⟨y, Jx⟩

for x, y ∈ SE ;

� if E is smooth, then E is strictly convex if and only if J is injective;

� if E is smooth, then E is reflexive if and only if J is surjective;

� if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous;

� if E is uniformly smooth, then J is uniformly norm-to-norm continuous on any bounded set;

� if E is reflexive, then E is strictly convex if and only if E∗ is smooth;

� if E is reflexive, then E is smooth if and only if E∗ is strictly convex;

� E is uniformly convex if and only if E∗ is uniformly smooth;

� E is uniformly smooth if and only if E∗ is uniformly convex.

For more details about Banach spaces, refer to [10] for instance.
In what follows, we introduce some notions about Banach spheres. For more details, see [4]. We know

that
|⟨x, y∗⟩| ≤ ∥x∥∥y∗∥ = 1

for (x, y∗) ∈ SE × SE∗ . We define a function ρ from SE × SE∗ to [0, π] by

ρ(x, y∗) = arccos ⟨x, y∗⟩

for (x, y∗) ∈ SE × SE∗ . Then, the following hold:

� For (x, y∗) ∈ SE × SE∗ , ρ(x, y∗) ≥ 0;

� if E is smooth and strictly convex, then x = y if and only if ρ(x, Jy) = 0 for x, y ∈ SE .

Here, J is the duality mapping on E. Notice that the function ρ is similar to a usual spherical metric defined
on the unit sphere of Hilbert spaces, although its domain is not SE ×SE but SE ×SE∗ ; obviously, it satisfies
no symmetry unless E is a Hilbert space.

Let E be a Banach space. Then, tx+ (1− t)y ̸= 0E for x, y ∈ SE with x ̸= −y and t ∈ [0, 1]. Now, we
can define a notion of convex combination on Banach spheres. For x, y ∈ SE with x ̸= −y and t ∈ [0, 1], set

tx⊕ (1− t)y =
tx+ (1− t)y

∥tx+ (1− t)y∥
∈ SE .
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Theorem 2.1 (Kimura–Sudo [4]). Let E be a Banach space. Then,

cos ρ(tx⊕ (1− t)y, z∗) =
t cos ρ(x, z∗) + (1− t) cos ρ(y, z∗)

∥tx+ (1− t)y∥

for x, y ∈ SE with x ̸= −y, z∗ ∈ SE∗ and t ∈ [0, 1].

Let E be a smooth Banach space and J the duality mapping on E. Let X be a nonempty subset of SE .
We say that X is admissible [4] if

⟨x, Jy⟩ > 0

for x, y ∈ X. Notice that X is admissible if and only if

ρ(x, Jy) <
π

2

for x, y ∈ X. Moreover, we say that X has the nonnegative functional property [4] if

inf
x,y∈X

⟨x, Jy⟩ ≥ 0,

or equivalently,

sup
x,y∈X

ρ(x, Jy) ≤ π

2
.

If X is admissible, then it has the nonnegative functional property.
The following is an example of a closed subset of a Banach sphere having the nonnegative functional

property:

Example 2.2 (Kimura–Sudo [4]). Let p > 1 and let q = p/(p − 1). Let ℓp and ℓq be the Lebesgue real
sequence spaces. Then, (ℓp)∗ = ℓq and they are smooth Banach spaces. Then, we know that

Jx =

(
xk
|xk|

|xk|p/q
)

for any x = (xk) ∈ Sℓp , where J is the duality mapping on ℓp. Let

X = {(xk) ∈ Sℓp | ∀k ∈ N, xk ≥ 0}.

Then, we know thatX is closed, and it has the nonnegative functional property. It is obvious that ⟨x, Jy⟩ ≥ 0
for any x, y ∈ X. In addition, letting x = (1, 0, 0, . . . ) and y = (0, 1, 0, . . . ), we have ⟨x, Jy⟩ = 0.

Lemma 2.3 (Kimura–Sudo [4]). Let E be a smooth Banach space. Let X be a nonempty subset of SE.
Then, the following hold:

(i) If X has the nonnegative functional property, then x ̸= −y for x, y ∈ X;

(ii) if E is reflexive and strictly convex, and X is admissible, then JX is admissible, where J is the duality
mapping on E;

(iii) if E is reflexive and strictly convex, and X has the nonnegative functional property, then JX has the
nonnegative functional property.

Let E be a Banach space and C a subset of SE . We say that C is spherically convex if

tx⊕ (1− t)y ∈ C

for x, y ∈ C with x ̸= −y and t ∈ [0, 1]. The intersection of spherically convex subsets is spherically convex.
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Let E be a smooth and uniformly convex Banach space. Let C be a nonempty, closed and spherically
convex subset of SE . For x ∈ SE , we denote the value

inf
y∈C

ρ(y, Jx)

by ρ(C, Jx), where J is the duality mapping on E. Let

D =
{
x ∈ SE

∣∣∣ ρ(C, Jx) < π

2

}
.

Then, for x ∈ D, there is a unique point ux ∈ C such that

ρ(ux, Jx) = inf
y∈C

ρ(y, Jx) = arccos

(
sup
y∈C

⟨y, Jx⟩

)
.

We call such a mapping ΠC : x 7→ ux a spherical projection onto C. Note that FixΠC = C. In what follows,
instead of D, we denote DomΠC .

To describe the geometrical properties of SE and related mappings, we often need assumptions concern-
ing the size of subsets of SE . The nonnegative functional property is a more adequate assumption than
admissibility for some cases.

Theorem 2.4 (Kimura–Sudo [4]). Let E be a smooth and uniformly convex Banach space. Let C be a
nonempty, closed and spherically convex subset of SE having the nonnegative functional property, and ΠC

a spherical projection onto C. Then,

cos ρ(u, JΠCx) cos ρ(ΠCx, Jx) ≥ cos ρ(u, Jx)

for x ∈ DomΠC and u ∈ C. Particularly,

ρ(u, JΠCx) ≤ ρ(u, Jx)

for x ∈ DomΠC and u ∈ C.

3. Cauchy sequences on Banach spheres

In this section, we consider convergence of a sequence on Banach spheres. The following fact is well
known, and plays an important role for the main results in this section:

Theorem 3.1 (Ibaraki–Kimura [3]). Let E be a uniformly smooth and uniformly convex Banach space.
Then, there exist continuous, strictly increasing and convex functions g

1
and g1 such that g

1
(0) = g1(0) = 0

and that
g
1
(∥x− y∥) ≤ 2− 2⟨x, Jy⟩ ≤ g1(∥x− y∥)

for x, y ∈ SE, where J is the duality mapping on E.

Now, we obtain the following:

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {xn} be a sequence of SE. Then, the following are equivalent:

(i) The sequence {xn} is a Cauchy sequence of E;

(ii) there exists a nonnegative real sequence {βn} converging to 0 such that

ρ(xm, Jxn) ≤ βn

for m,n ∈ N with m ≥ n;
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(iii) there exists a nonnegative real sequence {γn} converging to 0 such that

ρ(xn, Jxm) ≤ γn

for m,n ∈ N with m ≥ n.

Proof. We first suppose (i) and show (ii). Since {xn} is a Cauchy sequence of E, there exists a nonnegative
real sequence {αn} converging to 0 such that

∥xm − xn∥ ≤ αn

for m,n ∈ N with m ≥ n. Fix m,n ∈ N with m ≥ n. For details about the equivalent condition to
the Cauchy sequences, see [11]. By Theorem 3.1, we can find a continuous, strictly increasing and convex
function g1 such that g1(0) = 0, and that

2− 2⟨xm, Jxn⟩ ≤ g1(∥xm − xn∥) ≤ g1(αn),

and hence

cos ρ(xm, Jxn) ≥ 1− g1(αn)

2
.

Therefore, we obtain

ρ(xm, Jxn) ≤ arccos

(
1− g1(αn)

2

)
.

It means that (ii) holds.
We next assume (ii) and deduce (iii). Then, there exists a nonnegative real sequence {βn} converging to

0 such that
ρ(xm, Jxn) ≤ βn

for m,n ∈ N with m ≥ n. Fix m,n ∈ N with m ≥ n. By Theorem 3.1, we can find a continuous, strictly
increasing and convex function g

1
such that g

1
(0) = 0, and that

g
1
(∥xm − xn∥) ≤ 2− 2⟨xm, Jxn⟩ = 2(1− cos ρ(xm, Jxn)) ≤ 2(1− cosβn),

and therefore
∥xm − xn∥ ≤ g

1
−1(2(1− cosβn)).

Now, again By Theorem 3.1, we can find a continuous, strictly increasing and convex function g1 such that
g1(0) = 0, and that

2− 2⟨xn, Jxm⟩ ≤ g1(∥xn − xm∥) ≤ g1(g1
−1(2(1− cosβn))),

and hence

cos ρ(xn, Jxm) ≥ 1−
g1(g1

−1(2(1− cosβn)))

2
.

It implies that

ρ(xn, Jxm) ≤ arccos

(
1−

g1(g1
−1(2(1− cosβn)))

2

)
,

which means that (iii) holds.
We finally suppose (iii) and show that (i) holds. Then, there exists a nonnegative real sequence {γn}

converging to 0 such that
ρ(xn, Jxm) ≤ γn

for m,n ∈ N with m ≥ n. Fix m,n ∈ N with m ≥ n. By Theorem 3.1, we can find a continuous, strictly
increasing and convex function g

1
such that g

1
(0) = 0, and that

g
1
(∥xn − xm∥) ≤ 2− 2⟨xn, Jxm⟩ = 2− 2 cos ρ(xn, Jxm) ≤ 2− 2 cos γn
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and therefore
∥xn − xm∥ ≤ g

1
−1(2− 2 cos γn).

Hence, (iii) implies (i). Consequently, (i), (ii) and (iii) are equivalent to each other.

In the same fashions of the previous theorem, we also obtain the following:

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {xn} be a sequence of SE and x0 ∈ SE. Then, the following are equivalent:

(i) The sequence {xn} converges strongly to x0;

(ii) a real sequence {ρ(xn, Jx0)} converges to 0;

(iii) a real sequence {ρ(x0, Jxn)} converges to 0.

Theorem 3.4. Let E be a uniformly smooth and uniformly convex Banach space, and J the duality mapping
on E. Let {xn} and {yn} be sequences of SE. Then, the following are equivalent:

(i) A real sequence {∥xn − yn∥} converges to 0;

(ii) a real sequence {∥Jxn − Jyn∥} converges to 0;

(iii) a real sequence {ρ(xn, Jyn)} converges to 0;

(iv) a real sequence {ρ(yn, Jxn)} converges to 0.

4. Asymptotic centres of a sequence on a Banach sphere

Let E be a smooth, reflexive and strictly convex Banach space. Let {xn} be a sequence of SE . We call
z ∈ SE an asymptotic centre of {xn} if

lim inf
n→∞

⟨z, Jxn⟩ = sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩,

and call z∗ ∈ SE a dual-asymptotic centre of {xn} if

lim inf
n→∞

⟨xn, z∗⟩ = sup
y∗∈SE∗

lim inf
n→∞

⟨xn, y∗⟩.

We denote the set of all asymptotic centres of {xn} by

AC({xn}) =

{
x ∈ SE

∣∣∣∣∣ lim inf
n→∞

⟨x, Jxn⟩ = sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩

}
,

and denote the set of all dual-asymptotic centres of {xn} by

AC∗({xn}) =

{
x∗ ∈ SE∗

∣∣∣∣∣ lim inf
n→∞

⟨xn, x∗⟩ = sup
y∗∈SE∗

lim inf
n→∞

⟨xn, y∗⟩

}
.

Example 4.1. Let ℓp and ℓq be the Lebesgue real sequence spaces such as Example 2.2. Let {en} be a
sequence of Sℓp such as

en = (0, 0, . . . , 0, 1, 0, . . . ),

where the component 1 appears at the nth coordinate. It is obvious that {en} is not convergent strongly.
Then, for n ∈ N,

Jen = en ∈ ℓq.
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Let y ∈ Sℓp be an arbitrary point. Then, there exists {an} such that

y =
∞∑
i=1

aiei

and that
∑∞

i=1 |ai|
p = 1. Therefore, we have

lim inf
n→∞

⟨y, Jen⟩ = lim inf
n→∞

an⟨en, Jen⟩ = lim inf
n→∞

an = 0,

and hence AC({en}) = Sℓp . We next define a sequence {xn} of Sℓp by

xn =
1

2
e1 ⊕

1

2
en+1 =

e1 + en+1

∥e1 + en+1∥
=

e1 + en+1
p
√
2

for n ∈ N. It is obvious that {xn} is not convergent strongly. Let y∗ ∈ Sℓq be an arbitrary point. Then,
there exists {a∗n} such that

y∗ =
∞∑
i=1

a∗i ei

and that
∑∞

i=1 |a∗i |
q = 1. Therefore,

lim inf
n→∞

⟨xn, y∗⟩ = lim inf
n→∞

⟨e1 + en+1, y
∗⟩

p
√
2

=
a1
p
√
2
+ lim inf

n→∞

a∗n+1
p
√
2

=
a1
p
√
2
,

and thus

lim inf
n→∞

⟨xn, e1⟩ =
1
p
√
2
= sup

y∗∈Sℓq

lim inf
n→∞

⟨xn, y∗⟩.

It means that AC∗({xn}) = {e1}.

Now, we get the following lemma:

Lemma 4.2. Let E be a smooth, reflexive and strictly convex Banach space. Let {xn} be a sequence of SE.
Then,

AC({xn}) = AC∗({Jxn})

and
AC∗({xn}) = AC({Jxn}).

Proof. Take x ∈ AC({xn}). Then,

lim inf
n→∞

⟨Jxn, x⟩ = lim inf
n→∞

⟨x, Jxn⟩ = sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩ = sup
y∈SE

lim inf
n→∞

⟨Jxn, y⟩.

It implies that

x ∈ AC∗({Jxn}) =

{
x∗∗ ∈ SE

∣∣∣∣∣ lim inf
n→∞

⟨Jxn, x∗∗⟩ = sup
y∗∗∈SE

lim inf
n→∞

⟨Jxn, y∗∗⟩

}
,

and hence AC({xn}) ⊂ AC∗({Jxn}). Conversely, let x∗∗ ∈ AC∗({Jxn}). Then,

lim inf
n→∞

⟨x∗∗, Jxn⟩ = lim inf
n→∞

⟨Jxn, x∗∗⟩ = sup
y∗∗∈SE

lim inf
n→∞

⟨Jxn, y∗∗⟩ = sup
y∗∗∈SE

lim inf
n→∞

⟨y∗∗, Jxn⟩,

which implies that

x∗∗ ∈ AC({xn}) =

{
x ∈ SE

∣∣∣∣∣ lim inf
n→∞

⟨x, Jxn⟩ = sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩

}
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and thus AC∗({Jxn}) ⊂ AC({xn}). Therefore,

AC({xn}) = AC∗({Jxn}).

We also obtain
AC∗({xn}) = AC({Jxn}).

It completes the proof.

We next prove the following:

Lemma 4.3. Let E be a smooth and uniformly convex Banach space. Let {xn} be a sequence of SE such
that

sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩ > 0.

Then, {xn} has a unique asymptotic centre.

Proof. We define a real valued function g on SE by

g(z) = lim inf
n→∞

⟨z, Jxn⟩

for z ∈ SE . We remark that AC({xn}) coincides with the set of maximisers of g. Set

M = sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩ ∈ ]0, 1].

Then, there exists a sequence {zi} of SE such that

M ≥ g(zi) ≥ M − 1

i
.

Then, g(zi) → M as i → ∞. We first show that {zi} is a Cauchy sequence of E. We remark that for large
j0 ∈ N,

M − 1

j0
> 0.

Fix i, j ∈ N with i ≥ j ≥ j0. We show that zi ̸= −zj by contradiction. Assume that zi = −zj . Then, we
have

0 < lim inf
n→∞

⟨zi, Jxn⟩ = lim inf
n→∞

⟨−zj , Jxn⟩ = − lim sup
n→∞

⟨zj , Jxn⟩ < 0

and thus this is a contradiction. Hence, since zi ̸= −zj , we obtain

M ≥ g

(
1

2
zi ⊕

1

2
zj

)
= lim inf

n→∞

〈
1

2
zi ⊕

1

2
zj , Jxn

〉
= lim inf

n→∞

⟨zi + zj , Jxn⟩
∥zi + zj∥

≥ lim infn→∞ ⟨zi, Jxn⟩+ lim infn→∞ ⟨zj , Jxn⟩
∥zi + zj∥

=
g(zi) + g(zj)

∥zi + zj∥

≥ M − i−1 +M − j−1

∥zi + zj∥
≥ 2(M − j−1)

∥zi + zj∥
.

Therefore,

∥zi + zj∥ ≥ 2(M − j−1)

M
.

Now, we assume that {zi} is not a Cauchy sequence. Then, there is ε > 0 such that for k ∈ N with k ≥ j0,
there exist ik, jk ∈ N with ik ≥ jk ≥ k such that

∥zik − zjk∥ > ε.
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In this way, we can take two subsequences {zik} and {zjk} of {zi}. However, since

∥zik + zjk∥ ≥
2(M − j−1

k )

M

for k ∈ N with k ≥ j0, we have
lim
k→∞

∥zik + zjk∥ = 2.

From the uniformly convexity of E,
lim
k→∞

∥zik − zjk∥ = 0.

This is a contradiction. Hence, {zi} is a Cauchy sequence of E. Let z0 ∈ E be its strong limit. We notice
that z0 ∈ SE since SE is closed. From the continuity of g, we obtain g(z0) = M and hence z0 is a maximiser
of g.

Let z0, z
′
0 ∈ X be maximisers of g. We know that z0 ̸= −z′0. Then,

M ≥ g

(
1

2
z0 ⊕

1

2
z′0

)
= lim inf

n→∞

〈
1

2
z0 ⊕

1

2
z′0, Jxn

〉
= lim inf

n→∞

⟨z0 + z′0, Jxn⟩
∥z0 + z′0∥

≥ g(z0) + g(z′0)

∥z0 + z′0∥
=

2M

∥z0 + z′0∥

and therefore ∥z0 + z′0∥ = 2. Since E is strictly convex, we have z0 = z′0. It means that g has a unique
maximiser.

Lemma 4.4. Let E be a uniformly smooth and strictly convex Banach space. Let {xn} be a sequence of SE

such that
sup

y∗∈SE∗
lim inf
n→∞

⟨xn, y∗⟩ > 0.

Then, {xn} has a unique dual-asymptotic centre.

Proof. We know that AC∗({xn}) = AC({Jxn}) and the dual E∗ of E is smooth and uniformly convex. Let
J∗ is the duality mapping on E∗. Since

sup
y∗∈SE∗

lim inf
n→∞

⟨y∗, J∗Jxn⟩ = sup
y∗∈SE∗

lim inf
n→∞

⟨xn, y∗⟩ > 0,

we obtain the desired result from Lemma 4.3.

Theorem 4.5. Let E be a uniformly smooth and uniformly convex Banach space. Let C be a nonempty,
closed and spherically convex subset of SE having the nonnegative functional property. Let {xn} be a sequence
of C such that

sup
y∗∈SE∗

lim inf
n→∞

⟨xn, y∗⟩ > 0.

Then, J−1AC∗({xn}) is included in C.

Proof. Let {x0} = J−1AC∗({xn}). Let ΠC be a spherical projection onto C. Then, since

sup
y∈C

⟨y, Jx0⟩ ≥ lim inf
n→∞

⟨xn, Jx0⟩ = sup
y∗∈SE∗

lim inf
n→∞

⟨xn, y∗⟩ > 0,

we have
ρ(C, Jx0) <

π

2

and thus x0 ∈ DomΠC . From the property of the spherical projection, since

ρ(xn, JΠCx0) ≤ ρ(xn, Jx0)
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for n ∈ N, we have
lim sup
n→∞

ρ(xn, JΠCx0) ≤ lim sup
n→∞

ρ(xn, Jx0)

and therefore
lim inf
n→∞

⟨xn, JΠCx0⟩ ≥ lim inf
n→∞

⟨xn, Jx0⟩.

Since AC∗({xn}) consists of one point, we get x0 = ΠCx0 ∈ C.

We obtain the following in the same fashion of the previous theorem:

Theorem 4.6. Let E be a uniformly smooth and uniformly convex Banach space. Let C be a nonempty,
closed subset of SE such that it has the nonnegative functional property and JC is spherically convex. Let
{xn} be a sequence of C such that

sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩ > 0.

Then, AC({xn}) is included in C.

5. Delta-convergence on a Banach sphere

Let E be a smooth, reflexive and strictly convex Banach space. Let {xn} be a sequence of SE and x0 ∈ SE .
We say that {xn} delta-converges to a delta-limit x0 if {x0} = AC({xni}) for any subsequence {xni} of {xn}.
Moreover, we say that {xn} dual-delta-converges to a dual-delta-limit x0 if {x0} = J∗AC∗({xni}) for any
subsequence {xni} of {xn}.

The original definition of delta-convergence was defined by Lim [9] in the setting of metric spaces. Our
definition above differs slightly from the original definition since the asymptotic centre of a sequence is
defined by the dual pairing instead of the metric.

Theorem 5.1. Let E be a smooth and uniformly convex Banach space. Let {xn} be a sequence of SE

converging strongly to x0 ∈ SE. Then, {xn} delta-converges to x0.

Proof. Take a subsequence {xni} of {xn} arbitrarily. Then,

lim inf
i→∞

⟨x0, Jxni⟩ = ⟨x0, Jx0⟩ = 1.

Thus, since
lim inf
i→∞

⟨y, Jxni⟩ ≤ 1 = lim inf
i→∞

⟨x0, Jxni⟩

for y ∈ SE , we have
sup
y∈SE

lim inf
i→∞

⟨y, Jxni⟩ = lim inf
i→∞

⟨x0, Jxni⟩ = 1.

Thus, {x0} = AC({xni}), which implies that {xn} delta-converges to x0.

Theorem 5.2. Let E be a uniformly smooth and strictly convex Banach space. Let {xn} be a sequence of
SE converging strongly to x0 ∈ SE. Then, {xn} dual-delta-converges to x0.

Proof. Take a subsequence {xni} of {xn} arbitrarily. Then,

lim inf
i→∞

⟨xni , Jx0⟩ = ⟨x0, Jx0⟩ = 1.

Thus, since
lim inf
i→∞

⟨xni , y
∗⟩ ≤ 1 = lim inf

i→∞
⟨xni , Jx0⟩

for y∗ ∈ SE∗ , we have
sup

y∗∈SE∗
lim inf
i→∞

⟨xni , y
∗⟩ = lim inf

i→∞
⟨xni , Jx0⟩ = 1.

Thus, {Jx0} = AC∗({xni}), which implies that {xn} dual-delta-converges to x0.
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Consequently, both notions of delta-convergence are weaker than strong convergence. We next show
that the following duality theorem:

Theorem 5.3. Let E be a smooth, reflexive and strictly convex Banach space. Let {xn} be a sequence of SE

and x0 ∈ SE. Then, {xn} delta-converges to x0 if and only if {Jxn} dual-delta-converges to Jx0. Further,
{xn} dual-delta-converges to x0 if and only if {Jxn} delta-converges to Jx0.

Proof. Suppose that {xn} delta-converges to x0. For any subsequence {Jxni} of {Jxn}, since

{x0} = AC({xni}) = AC∗({Jxni}),

we have {Jx0} = J AC∗({Jxni}). It means that {Jxn} dual-delta-converges to Jx0. Suppose that {Jxn}
dual-delta-converges to Jx0. For any subsequence {xni} of {xn}, since

{Jx0} = J AC∗({Jxni}) = J AC({xni}),

we have {x0} = AC({xni}). It means that {xn} delta-converges to x0. Consequently, {xn} delta-converges
to x0 if and only if {Jxn} dual-delta-converges to Jx0. We can also prove that {xn} dual-delta-converges
to x0 if and only if {Jxn} delta-converges to Jx0.

Let E be a smooth, reflexive and strictly convex Banach space. Let {xn} be a sequence of SE . We say
that {xn} is spherically bounded if

sup
x∈SE

lim inf
n→∞

⟨x, Jxn⟩ > 0,

or equivalently

inf
x∈SE

lim sup
n→∞

ρ(x, Jxn) <
π

2
.

We further say that {xn} is dual-spherically bounded if

sup
x∗∈SE∗

lim inf
n→∞

⟨xn, x∗⟩ > 0,

or equivalently

inf
x∗∈SE∗

lim sup
n→∞

ρ(xn, x
∗) <

π

2
.

We next show that sequential delta-compactness of a spherically bounded sequence. To prove this, we
use the similar fashion to [1, Proposition 3.1.2].

Theorem 5.4. Let E be a smooth and uniformly convex Banach space. Let {xn} be a spherically bounded
sequence of SE. Then, {xn} has a delta-convergent subsequence.

Proof. Let J be the duality mapping on E. Set

r1 = inf
{un}⊂{xn}

(
inf

x∈SE

lim sup
n→∞

ρ(x, Jun)

)
.

We take a subsequence {x1n} of {xn} as

inf
x∈SE

lim sup
n→∞

ρ(x, Jx1n) ≤ r1 +
1

1
.

Further, set

r2 = inf
{u1

n}⊂{x1
n}

(
inf

x∈SE

lim sup
n→∞

ρ(x, Ju1n)

)
.
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Then, we can take a subsequence {x2n} of {x1n} as

inf
x∈SE

lim sup
n→∞

ρ(x, Jx2n) ≤ r2 +
1

2
.

In this way, for a sequence {xkn}, let

rk+1 = inf
{uk

n}⊂{xk
n}

(
inf

x∈SE

lim sup
n→∞

ρ(x, Jukn)

)
and take a subsequence {xk+1

n } of {xkn} as

inf
x∈SE

lim sup
n→∞

ρ(x, Jxk+1
n ) ≤ rk+1 +

1

k + 1
.

Then, {rk} is increasing and bounded above. Therefore, {rk} converges to some real number r. Now, we
take a subsequence {xnk

} of {xn} as xnk
= xkk for k ∈ N. Fix i ∈ N arbitrarily. For sufficiently large k ∈ N,

{xnk
} is a subsequence of {xin}. Thus,

ri+1 ≤ inf
x∈SE

lim sup
k→∞

ρ(x, Jxnk
).

Moreover, since

inf
x∈SE

lim sup
k→∞

ρ(x, Jxnk
) ≤ ri+1 +

1

i+ 1
,

letting i → ∞, we obtain
inf

x∈SE

lim sup
k→∞

ρ(x, Jxnk
) = r

and thus
r = inf

x∈SE

lim sup
k→∞

ρ(x, Jxnk
) ≤ inf

x∈SE

lim sup
n→∞

ρ(x, Jxn) <
π

2
.

In the same way, for any subsequence {xnkl
} of {xnk

}, we get

inf
x∈SE

lim sup
l→∞

ρ(x, Jxnkl
) = r <

π

2
.

Let {x0} = AC({xnk
}). Then, for any subsequence {xnkl

} of {xnk
}, we have

lim sup
l→∞

ρ(x0, Jxnkl
) ≤ lim sup

k→∞
ρ(x0, Jxnk

) = inf
x∈SE

lim sup
k→∞

ρ(x, Jxnk
) = r = inf

x∈SE

lim sup
l→∞

ρ(x, Jxnkl
)

and thus {x0} = AC({xnkl
}). It means that {xnk

} delta-converges to x0 ∈ SE .

Theorem 5.5. Let E be a uniformly smooth and strictly convex Banach space. Let {xn} be a dual-spherically
bounded sequence of SE. Then, {xn} has a dual-delta-convergent subsequence.

Proof. We show that {Jxn} has a delta-convergent subsequence. Since {xn} is dual-spherically bounded,

sup
x∗∈SE∗

lim inf
n→∞

⟨x∗, J∗Jxn⟩ = sup
x∗∈SE∗

lim inf
n→∞

⟨xn, x∗⟩ > 0

and thus {Jxn} is spherically bounded. Note that E∗ is smooth and uniformly convex. From Theorem
5.4, {Jxn} has a delta-convergent subsequence {Jxni}. Let x∗0 ∈ SE∗ be its delta-limit. Then, {xni}
dual-delta-converges to J∗x∗. It completes the proof.

At the end of this section, we obtain the following:



Y. Kimura and S. Sudo, Lett. Nonlinear Anal. Appl. 3 (2025), 85-102 98

Lemma 5.6. Let E be a smooth and uniformly convex Banach space. Let {xn} be a spherically bounded
sequence of SE. Then, {xn} delta-converges to x0 ∈ SE if and only if x0 is a delta-limit of every delta-
convergent subsequence of {xn}.

Proof. Since the ‘only if’ part is obvious, we prove the ‘if’ part. Suppose that x0 is a delta-limit of every delta-
converging subsequence of {xn}. Take a subsequence {xni} of {xn} arbitrarily and let {z} = AC({xni}).
Here, we take a subsequence {xnij

} of {xni} such that

lim
j→∞

〈
x0, xnij

〉
= lim inf

i→∞
⟨x0, xni⟩

and that {xnij
} is a delta-convergent sequence. From the assumption, x0 is its delta-limit. Then, we obtain

lim inf
i→∞

⟨x0, xni⟩ = lim
j→∞

〈
x0, xnij

〉
≥ lim inf

j→∞

〈
z, xnij

〉
≥ lim inf

i→∞
⟨z, xni⟩.

Since z is a unique asymptotic centre of {xni}, we obtain z = x0 and thus {xn} delta-converges to x0.

Lemma 5.7. Let E be a uniformly smooth and strictly convex Banach space. Let {xn} be a dual-spherically
bounded sequence of SE. Then, {xn} dual-delta-converges to x0 ∈ SE if and only if x0 is a dual-delta-limit
of every dual-delta-convergent subsequence of {xn}.

6. Applications to fixed point approximation

In this section, we prove a delta-convergence theorem for a spherically nonspreading mapping on a
Banach sphere.

Let E be a smooth Banach space and X nonempty subset of SE having the nonnegative functional
property. We call a mapping T from X into itself a spherically nonspreading mapping if

cos ρ(Tx, JTy) + cos ρ(Ty, JTx) ≥ cos ρ(Tx, Jy) + cos ρ(Ty, Jx)

for x, y ∈ X, where J is the duality mapping on E. A notion of nonspreadingness is first introduced
by Kohsaka and Takahashi [7] in Banach spaces, and generalised to geodesic space in [6]. For a nonempty
closed spherically convex subset C of X, the spherical projection ΠC from X∩DomΠC onto C is spherically
nonspreading; see [4].

Lemma 6.1 (Kimura–Sudo [4]). Let E be a smooth Banach space and X nonempty, closed and spherically
convex subset of SE having the nonnegative functional property. Let T be a spherically nonspreading mapping
on X. Then, the following hold:

� Its fixed point set FixT is closed and spherically convex;

� if T has a fixed point, then
ρ(p, JTx) ≤ ρ(p, Jx)

for x ∈ X and p ∈ FixT .

We first prove the following result corresponding to demiclosedness of a mapping:

Lemma 6.2. Let E be a uniformly smooth and strictly convex Banach space and X a nonempty, closed
and spherically convex subset of SE having the nonnegative functional property. Let T be a spherically
nonspreading mapping on X. Then,

J∗AC∗({xn}) ⊂ FixT

for a dual-spherically bounded sequence {xn} of X such that

lim
n→∞

∥Jxn − JTxn∥ = 0.

Here, J and J∗ are the duality mappings on E and E∗, respectively.
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Proof. Since J∗ is uniformly norm-to-norm continuous on SE∗ , we have

lim
n→∞

∥xn − Txn∥ = 0.

Let {w∗} = AC∗({xn}). Set w = J∗w∗. Since T is spherically nonspreading, for fixed n ∈ N,

cos ρ(Txn, JTw) + cos ρ(Tw, JTxn) ≥ cos ρ(Txn, Jw) + cos ρ(Tw, Jxn)

and hence
⟨Txn, JTw⟩ ≥ ⟨Txn, Jw⟩+ ⟨Tw, Jxn − JTxn⟩.

Note that
⟨Txn, JTw⟩ = ⟨Txn − xn, JTw⟩+ ⟨xn, JTw⟩

and
⟨Txn, Jw⟩ = ⟨Txn − xn, Jw⟩+ ⟨xn, Jw⟩.

Thus, we have
lim inf
n→∞

⟨Txn, JTw⟩ = lim inf
n→∞

⟨xn, JTw⟩

and
lim inf
n→∞

⟨Txn, Jw⟩ = lim inf
n→∞

⟨xn, Jw⟩.

Therefore,

lim inf
n→∞

⟨xn, JTw⟩ = lim inf
n→∞

⟨Txn, JTw⟩

≥ lim inf
n→∞

(⟨Txn, Jw⟩+ ⟨Tw, Jxn − JTxn⟩)

= lim inf
n→∞

⟨Txn, Jw⟩

= lim inf
n→∞

⟨xn, Jw⟩ = lim inf
n→∞

⟨xn, w∗⟩.

Since AC∗({xn}) is a singleton, we have Jw = w∗ = JTw and therefore w ∈ FixT , which implies that
J∗AC∗({xn}) ⊂ FixT .

Lemma 6.3. Let E be a uniformly smooth and uniformly convex Banach space and X a nonempty, closed
and spherically convex subset of SE having the nonnegative functional property such that JX is spherically
convex. Let T be a spherically nonspreading mapping on X which has a fixed point. Let {αn} be a real
sequence of [0, 1]. For an initial point x1 ∈ X ∩DomΠFixT , define a sequence {xn} of X as follows:

xn+1 =
J∗(αnJxn + (1− αn)JTxn)

∥αnJxn + (1− αn)JTxn∥
= J∗(αnJxn ⊕ (1− αn)JTxn)

for n ∈ N. Then, a sequence {ΠFixTxn} converges strongly to some x0 ∈ FixT , where ΠFixT is a spherical
projection onto FixT .

Proof. Since x1 ∈ DomΠFixT ,

ρ(FixT, Jx1) = ρ(ΠFixTx1, Jx1) <
π

2
.

Further,

cos ρ(ΠFixTx1, Jxn+1) = cos ρ(ΠFixTx1, αnJxn ⊕ (1− αn)JTxn)

≥ αn cos ρ(ΠFixTx1, Jxn) + (1− αn) cos ρ(ΠFixTx1, JTxn)

≥ cos ρ(ΠFixTx1, Jxn).
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Therefore,

ρ(FixT, Jxn) ≤ ρ(ΠFixTx1, Jxn) ≤ ρ(ΠFixTx1, Jx1) <
π

2
.

It means that {xn} is included in DomΠFixT and hence a sequence {ΠFixTxn} is well defined. In what
follows, we denote ΠFixT by Π. We show that {Πxn} is a Cauchy sequence. Fix n ∈ N. Then,

cos ρ(Πxn+1, Jxn+1) ≥ cos ρ(Πxn, Jxn+1) = cos ρ(Πxn, αnJxn ⊕ (1− αn)JTxn)

≥ αn cos ρ(Πxn, Jxn) + (1− αn) cos ρ(Πxn, JTxn) ≥ cos ρ(Πxn, Jxn)

and thus
0 < ⟨p, Jx1⟩ ≤ ⟨Πxn, Jxn⟩ ≤ ⟨Πxn+1, Jxn+1⟩ ≤ 1.

It implies that {⟨Πxn, Jxn⟩} is convergent and that there exists a nonnegative real sequence {αn} converging
to 0 such that

⟨Πxm, Jxm⟩ − ⟨Πxn, Jxn⟩ = |⟨Πxm, Jxm⟩ − ⟨Πxn, Jxn⟩| ≤ αn

for m,n ∈ N with m ≥ n. Now, fix m,n ∈ N with m ≥ n arbitrarily. From the property of Π, we get

cos ρ(Πxn, JΠxm) cos ρ(Πxm, Jxm) ≥ cos ρ(Πxn, Jxm)

and thus

cos ρ(Πxn, JΠxm) ≥ 1− cos ρ(Πxm, Jxm)− cos ρ(Πxn, Jxm)

cos ρ(Πxm, Jxm)
= 1− ⟨Πxm, Jxm⟩ − ⟨Πxn, Jxm⟩

⟨Πxm, Jxm⟩
.

Moreover, since
⟨Πxn, Jxm⟩ = cos ρ(Πxn, Jxm) ≥ cos ρ(Πxn, Jxn) = ⟨Πxn, Jxn⟩,

we have

⟨Πxn, JΠxm⟩ = cos ρ(Πxn, JΠxm) ≥ 1− ⟨Πxm, Jxm⟩ − ⟨Πxn, Jxm⟩
⟨Πxm, Jxm⟩

≥ 1− ⟨Πxm, Jxm⟩ − ⟨Πxn, Jxn⟩
⟨Πxm, Jxm⟩

= 1− |⟨Πxm, Jxm⟩ − ⟨Πxn, Jxn⟩|
⟨Πxm, Jxm⟩

≥ 1− αn

⟨p, Jx1⟩
.

Then,

ρ(Πxn, JΠxm) ≤ arccos

(
1− αn

⟨p, Jx1⟩

)
,

which implies that {Πxn} is a Cauchy sequence from Theorem 3.2, and therefore it converges strongly to
some x0 ∈ FixT .

Now we obtain a fixed point approximation theorem with the Krasnosel’skii type iterative scheme [8].
Before that, we give the following condition:

Let E be a smooth Banach space and J the duality mapping on E. We say that J is sequentially
delta-continuous if a sequence {Jxn} delta-converges to Jx0 whenever a spherically bounded sequence {xn}
of SE delta-converges to x0 ∈ SE .

Theorem 6.4. Let E be a uniformly smooth and uniformly convex Banach space and X a nonempty, ad-
missible, closed and spherically convex subset of SE such that JX is spherically convex. Let T be a spherically
nonspreading mapping on X which has a fixed point. Assume that J is sequentially delta-continuous. For
an initial point x1 ∈ X, define a sequence {xn} of X as follows:

xn+1 =
J∗(Jxn + JTxn)

∥Jxn + JTxn∥
= J∗

(
1

2
Jxn ⊕ 1

2
JTxn

)
∈ X
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for n ∈ N. Then, {xn} delta-converges to a fixed point

x0 = lim
n→∞

ΠFixTxn.

Proof. Since T is spherically nonspreading, for p ∈ FixT , we have

cos ρ(p, Jxn+1) = cos ρ

(
p,

1

2
Jxn ⊕ 1

2
JTxn

)
≥ 1

2
cos ρ(p, Jxn) +

1

2
cos ρ(p, JTxn) ≥ cos ρ(p, Jxn)

for n ∈ N and hence a limit of {cos ρ(p, Jxn)} exists for all p ∈ FixT , and the limit is positive. Moreover,
since

sup
y∈SE

lim inf
n→∞

⟨y, Jxn⟩ ≥ lim inf
n→∞

⟨p, Jxn⟩ ≥ ⟨p, Jx1⟩ > 0,

the generated sequence {xn} is spherically bounded. Fix p ∈ FixT and n ∈ N arbitrarily. Then,

cos ρ(p, Jxn+1) = cos ρ

(
p,

1

2
Jxn ⊕ 1

2
JTxn

)
=

cos ρ(p, Jxn) + cos ρ(p, JTxn)

∥Jxn + JTxn∥
≥ 2 cos ρ(p, Jxn)

∥Jxn + JTxn∥

and hence

∥Jxn + JTxn∥ ≥ 2 cos ρ(p, Jxn)

cos ρ(p, Jxn+1)
.

Thus,

2 ≥ ∥Jxn + JTxn∥ ≥ 2 cos ρ(p, Jxn)

cos ρ(p, Jxn+1)
→ 2

as n → ∞. From the uniformly convexity of E∗,

lim
n→∞

∥Jxn − JTxn∥ = 0.

Take a delta-convergent sequence {xni} of {xn} and let w ∈ X be its delta-limit. Then, from sequential
delta-continuity of J , a sequence {Jxni} delta-converges to Jw. Since

{w} = J−1{Jw} = J−1AC({Jxni}) = J−1AC∗({xni}),

from Lemma 6.2, we have w ∈ FixT . Note that from Lemma 6.3, a sequence {ΠFixTxn} converges strongly
to x0 ∈ FixT . Since

lim inf
n→∞

⟨x0, Jxn⟩ = lim inf
n→∞

⟨x0 +ΠFixTxn −ΠFixTxn, Jxn⟩

= lim inf
n→∞

(−⟨ΠFixTxn − x0, Jxn⟩+ ⟨ΠFixTxn, Jxn⟩)

≥ lim inf
n→∞

(−∥ΠFixTxn − x0∥+ ⟨ΠFixTxn, Jxn⟩)

= lim inf
n→∞

⟨ΠFixTxn, Jxn⟩ ≥ lim inf
n→∞

⟨w, Jxn⟩,

we get w = x0, which implies that {xn} delta-converges to x0. This is the desired result.

LetH be a Hilbert space. Then, since the duality mapping onH is the identity mapping and AC({xn}) =
AC∗({xn}) for a sequence {xn} of SH , it is an example having the sequentially delta-continuous duality
mapping. However, we have not known that there is an infinite dimensional Banach space having the
non-trivial sequentially delta-continuous duality mapping yet. At the end of this section, we consider the
following example:
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Example 6.5. Let m ∈ N and p > 1. We define a norm on Rm by

∥x∥ =

(
m∑
k=1

|xk|p
)1/p

for x = (x1, . . . , xm) ∈ Rm. We denote it by ℓp;m and then it is a uniformly smooth and uniformly convex
Banach space. Moreover, for q = p/(p−1) > 1, we have (ℓp;m)∗ = ℓq;m. Let J be the duality mapping on ℓp;m

and S be the unit sphere of ℓp;m. Take an arbitrary spherically bounded sequence {xn} of S delta-converging
to x0 ∈ S. Then, since S is bounded and closed, {xn} has a convergent subsequence. Let {xni} be such a
sequence of {xn} and y0 ∈ S its limit. We remark that {x0} = AC({xni}). Thus, {xni} converges to x0.
Therefore, {Jxni} converges to Jx0 and hence it delta-converges to Jx0. It means that J is sequentially
delta-continuous.
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