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Abstract

This study extends iterative scheme generating methods (ISGMs) to apply to general classes of mappings.
In contrast to previous studies, this study examines quasi-nonexpansive and 2-demiclosed mappings, in
addition to quasi-nonexpansive and demiclosed mappings. By doing so, we can consider a class of mappings
called normally 2-generalized hybrid mappings. For these extended classes of mappings, we develop the
ISGMs that generate various iterative schemes to locate common fixed points.
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1. Introduction

Throughout this paper, we denote by H a real Hilbert space with an inner product ⟨·, ·⟩ and the induced
norm ∥·∥. Let T be a mapping from C into H, where C is a nonempty subset of H. We use a notation

F (T ) = {x ∈ C : Tx = x}

to denote the set of fixed points of T . A mapping T : C → H is said to be (i) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. (1)
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For nonexpansive mappings, various approximation methods for finding fixed points have been studied
because of their great application value. The following iteration is called the Mann type [22]:

xn+1 = λnxn + (1− λn)Txn for all n ∈ N = {1, 2, · · · }, (2)

where x1 ∈ C is given arbitrarily and {λn} ⊂ [0, 1] satisfies appropriate conditions. It is known that Mann
type iterative scheme yields weak convergence; see Reich [25].

Kocourek et al. [8] introduced a class of mappings that unifies nonexpansive mappings and other impor-
tant classes of mappings. A mapping T : C → H is called (ii) generalized hybrid [8] if there exist α, β ∈ R
such that

α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2 (3)

for all x, y ∈ C. Letting α = 1 and β = 0 in (3), we have the condition (1). This means that nonexpansive
mappings are contained by the class of generalized hybrid mappings as particular cases. The class of
generalized hybrid mappings includes many other types of mappings; for instance, nonspreading mappings
[9], hybrid mappings [26], and λ-hybrid mappings [1].

The class of generalized hybrid mappings has been further extended. A mapping T : C → H is called
(iii) normally generalized hybrid [28] if there exist α, β, γ, δ ∈ R such that

α ∥Tx− Ty∥2 + β ∥x− Ty∥2 + γ ∥Tx− y∥2 + δ ∥x− y∥2 ≤ 0 for all x, y ∈ C (4)

where (1) α+ β + γ + δ ≥ 0, and (2) α+ β > 0 or α+ γ > 0.

It is easy to verify that the class of normally generalized hybrid mappings covers generalized hybrid mappings.
Unlike the case of generalized hybrid mappings, a normally generalized hybrid mapping T does not have
multiple distinct fixed points when α+ β + γ + δ > 0. This was shown in Takahashi et al. [28]. A normally
generalized hybrid mapping is quasi-nonexpansive (13) and demiclosed (14); see Takahashi et al. [28] or
Proposition 2.1 in this paper. Consequently, generalized hybrid mappings, including nonexpansive mappings
etc., are also quasi-nonexpansive and demiclosed.

Recently, for quasi-nonexpansive and demiclosed mappings, Kondo [19] proved the following theorem:

Theorem 1.1 ([19]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let
S, T : C → C be quasi-nonexpansive and demiclosed mappings such that F (S) ∩ F (T ) ̸= ∅. Denote by
PF (S)∩F (T ) the metric projection from H onto F (S) ∩ F (T ). Let {an}, {bn}, and {cn} be sequences of real
numbers in the interval [0, 1] such that an+bn+cn = 1 for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0.
Define a sequence {xn} in C as follows:

x1 ∈ C is given,

xn+1 = anyn + bnSzn + cnTwn

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy the following conditions:

∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥ (5)

for all q ∈ F (S) ∩ F (T ) and n ∈ N,

xn − yn → 0 , xn − zn → 0 , and xn − wn → 0 . (6)

Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

In this theorem, {yn}, {zn}, and {wn} are given as “free sequences” that are only required to satisfy the
conditions (5) and (6). This method generates infinitely many iterative schemes. For instance, consider the
following two-step iterative scheme:

yn = λnxn + (1− λn)Sxn, (7)

xn+1 = anyn + bnSyn + cnTyn,
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where an initial point x1 ∈ C is provided arbitrarily and λn → 1 is required. For two-step iterative methods,
see Ishikawa’s seminal work [6]. It can be verified that {yn} in (7) satisfies the conditions ∥yn − q∥ ≤ ∥xn − q∥
and xn−yn → 0, where q is an arbitrarily selected element in F (S)∩F (T ). Consequently, we can conclude
from Theorem 1.1 that the sequence {xn}, defined recursively by (7), converges weakly to a common fixed
point of S and T . Similarly, Theorem 1.1 can generate infinitely many other iterative schemes such as three-
step and more general iterative schemes and we call it an iterative scheme generating method (ISGM). This
method was initiated by Kondo [14, 16], employing mean-valued sequences; see also [17, 18]. For three-step
iterative procedure, see Noor [24]. For coincidence point theorem for two commutative nonlinear mappings,
see Asadi and Karapinar [2].

As mappings (1), (3), and (4) with fixed points are quasi-nonexpansive and demiclosed, Theorem 1.1
can apply to those classes of mappings. In particular, if T is nonexpansive, then T 2 is also nonexpansive.
Furthermore, the relationship F (T ) ∩ F

(
T 2

)
= F (T ) holds. Thus, replacing S in Theorem 1.1 by T 2, we

have the following, where notations are adjusted:

Corollary 1.2. Let C be a nonempty, closed, and convex subset of H and let T : C → C be a nonexpansive
mapping such that F (T ) ̸= ∅. Denote by PF (T ) the metric projection from H onto F (T ). Let {an}, {bn},
and {cn} be sequences of real numbers in the interval [0, 1] such that an + bn + cn = 1 for all n ∈ N,
limn→∞anbn > 0, and limn→∞ancn > 0. Define a sequence {xn} in C as follows:

x1 ∈ C is given, (8)

xn+1 = anyn + bnTzn + cnT
2wn

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy the following conditions:

∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥ (9)

for all q ∈ F (S) ∩ F (T ) and n ∈ N,

xn − yn → 0 , xn − zn → 0 , and xn − wn → 0 . (10)

Then, {xn} converges weakly to a point x̂ ∈ F (T ), where x̂ ≡ limn→∞ PF (T )xn.

Although Corollary 1.2 is deduced from Theorem 1.1 as a special case, it can also generate infinitely
many iterative schemes to find a fixed point of a nonexpansive mapping.

The class of mappings studied for fixed point approximation has been further extended. A mapping
T : C → C is called (iv) 2-generalized hybrid [23] if there exist α1, α2, β1, β2 ∈ R such that

α1

∥∥T 2x− Ty
∥∥2 + α2 ∥Tx− Ty∥2 + (1− α1 − α2) ∥x− Ty∥2 (11)

≤ β1
∥∥T 2x− y

∥∥2 + β2 ∥Tx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C. Generalized hybrid mappings (3) are contained by the class of 2-generalized hybrid mappings
as special cases of α1 = β1 = 0. A mapping T : C → C is termed (v) normally 2-generalized hybrid [20] if
there exist α0, β0, α1, β1, α2, β2 ∈ R such that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2 (12)

+β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C,

where (1)

2∑
n=0

(αn + βn) ≥ 0 and (2) α2 + α1 + α0 > 0.
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The class of normally 2-generalized hybrid mappings contains all classes of mappings (i)–(iv); see Kondo and
Takahashi [20]. Unlike the cases of generalized hybrid mappings and 2-generalized hybrid mappings, a nor-
mally 2-generalized hybrid mapping T does not have multiple distinct fixed points when

∑2
n=0 (αn + βn) > 0.

For examples of these mapping classes, see [5, 10, 15] and papers cited therein.
It is known that mappings (iv) and (v) with fixed points are quasi-nonexpansive (13) and 2-dmiclosed

(15); see Kondo and Takahashi [20] or Proposition 2.2 in this paper. As the 2-demiclosedness (15) is logically
weaker than the demiclosedness (14), Theorem 1.1 cannot apply to the types of mappings (iv) and (v). For
2-generalized hybrid mappings and normally 2-generalized hybrid mappings characterized respectively by
the conditions (11) and (12), the ISGMs have not yet been established.

In this work, we extend ISGMs to apply to quasi-nonexpansive and 2-demiclosed mappings, in addition
to quasi-nonexpansive and demiclosed mappings, which allows us to take into account the class of normally
2-generalized hybrid mappings. For these broad classes of mappings, we develop the ISGMs that generate
various iterative schemes to locate common fixed points. This work complements Theorem 1.1, which focuses
only on quasi-nonexpansive and demiclosed mappings. In what follows, we prepare preliminary results in
Section 2. Section 3 establishes the main theorems. Section 4 introduces some variations of iterative schemes
derived from our main theorems. In Section 5, as an appendix, we prove Propositions 2.1 and 2.2 for reader’s
convenience.

2. Preliminaries

In this section, we concisely provide preliminary information. Let {xn} be a sequence in a real Hilbert
space H and let x ∈ H. Notations xn → x and xn ⇀ x represent strong and weak convergence of {xn} to
x, respectively. The following are known in the literature:

(a) xn ⇀ x if and only if for any subsequence {xni} of {xn}, there exists a subsequence
{
xnij

}
of {xni}

such that xnij ⇀ x;
(b) if xn → x and yn ⇀ y, then ⟨xn, yn⟩ → ⟨x, y⟩;
(c) if C is a closed and convex subset of H, it is weakly closed, that is, {xn} ⊂ C and xn ⇀ x imply

x ∈ C.

Let C be a nonempty, closed, and convex subset of H. A mapping T : C → H with F (T ) ̸= ∅ is called
quasi-nonexpansive if

∥Tx− q∥ ≤ ∥x− q∥ for all x ∈ C and q ∈ F (T ). (13)

According to Itoh and Takahashi [7], a set of fixed points of a quasi-nonexpansive mapping is closed and
convex. Let {xn} be a sequence in C. A mapping T : C → H is called demiclosed if

xn − Txn → 0 and xn ⇀ p =⇒ p ∈ F (T ). (14)

It is often said that I − T is demiclosed if (14) holds, where I represents the identity mapping. Kondo [12]
called a mapping T : C → C 2-demiclosed if

xn − Txn → 0, xn − T 2xn → 0, and xn ⇀ p =⇒ p ∈ F (T ). (15)

When considering 2-demiclosed mappings, we restrict the range of T to C since T 2xn must be defined
properly. If T : C → C, a demiclosed mapping is 2-demiclosed. As mentioned in Introduction, the classes
of mappings (i)–(iii) are quasi-nonexpansive and demiclosed, while the classes of mappings (iv) and (v) are
quasi-nonexpansive and 2-demiclosed, if they have fixed points. More precisely, the following propositions
hold:

Proposition 2.1 ([28]; see also Kocourek et al. [8]). Let T : C → H be a normally generalized hybrid
mapping (4) with a fixed point, where C is a nonempty, closed, and convex subset of H. Then, T is quasi-
nonexpansive and demiclosed.
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Proposition 2.2 ([20]; see also Maruyama et al. [23]). Let T : C → C be a normally 2-generalized hybrid
mapping (12) with a fixed point, where C is a nonempty, closed, and convex subset of H. Then, T is
quasi-nonexpansive and 2-demiclosed.

Proofs of Propositions 2.1 and 2.2 are also provided in Section 5 in this paper for self-completeness. For
examples of mappings that are quasi-nonexpansive and 2-demiclosed but are not demiclosed, see [5, 10, 15].

Let F be a nonempty, closed, and convex subset of H. Following the convention, we use the notation
PF to represent a metric projection from H onto F . A metric projection PF is nonexpansive and satisfies
the inequality

⟨x− PFx, PFx− q⟩ ≥ 0 for all x ∈ H and q ∈ F. (16)

The following lemmas are used in the next section:

Lemma 2.3 ([27]). Let F be a nonempty, closed, and convex subset of H, let PF be the metric projection
from H onto F , and let {xn} be a sequence in H. If ∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ F and n ∈ N, then
{PFxn} converges in F .

Lemma 2.4 ([23, 29]). Let x, y, z, w, v ∈ H and a, b, c, d, e ∈ R. Then, the following hold:
(a) If a+ b = 1, then ∥ax+ by∥2 = a ∥x∥2 + b ∥y∥2 − ab ∥x− y∥2 ;
(b) if a+ b+ c = 1, then

∥ax+ by + cz∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 ;

(c) if a+ b+ c+ d = 1, then

∥ax+ by + cz + dw∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 ;

(d) if a+ b+ c+ d+ e = 1, then

∥ax+ by + cz + dw + ev∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2 + e ∥v∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2 − ae ∥x− v∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − be ∥y − v∥2

−cd ∥z − w∥2 − ce ∥z − v∥2 − de ∥w − v∥2 .

A proof of (c) is found in Kondo and Takahashi [21]. For Lemma 2.4, conditions a, b, c, d, e ∈ [0, 1] are
not necessary. If a, b, c, d ∈ [0, 1], from (c), it follows that

∥ax+ by + cz + dw∥2 (17)

≤ a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2 − ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2 .

In the proof of Theorem 3.1, we use (17).
In Sections 3 and 4, we assume that there exists a common fixed point of nonlinear mappings. A set of

sufficient conditions for the existence of a common fixed point is stated explicitly in the following theorem:

Theorem 2.5 ([3]). Let C be a nonempty, closed, convex, and bounded subset of H. Let S, T : C → C be
normally 2-generalized hybrid mappings such that ST = TS. Then, F (S) ∩ F (T ) is nonempty.

For common fixed point theorems, see also [4, 11, 13] and papers cited therein.
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3. Main Results

In this section, we develop the ISGMs to deal with more general types of mappings than the earlier study
[19]. We will prove two theorems in this section. Each of the two theorems generates an infinite number of
iterative schemes that weakly approximate a common fixed point. The fundamental elements of the proof
have been developed and refined in numerous prior studies; see papers cited in Kondo [10].

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, let S : C → C
be a quasi-nonexpansive and demiclosed mapping, and let T : C → C be a quasi-nonexpansive and 2-
demiclosed mapping. Suppose that F (S) ∩ F (T ) ̸= ∅. Denote by PF (S)∩F (T ) the metric projection from H
onto F (S) ∩ F (T ). Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in the interval [0, 1] such
that an + bn + cn + dn = 1 for all n ∈ N, limn→∞anbn > 0, limn→∞ancn > 0, and limn→∞andn > 0. Define
a sequence {xn} in C as follows:

x1 ∈ C : given,

xn+1 = anyn + bnSzn + cnTwn + dnT
2wn

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy

∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥ (18)

for all q ∈ F (S) ∩ F (T ) and n ∈ N,

xn − yn → 0 , xn − zn → 0 , and xn − wn → 0 . (19)

Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

Proof. As S and T are quasi-nonexpansive (13), F (S) and F (T ) are closed and convex. Therefore, F (S)∩
F (T ) is also closed and convex. As F (S)∩F (T ) ̸= ∅ is assumed, the metric projection PF (S)∩F (T ) from H
onto F (S) ∩ F (T ) is properly defined.

Observe that
∥xn+1 − q∥ ≤ ∥xn − q∥ (20)

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Choose q ∈ F (S) ∩ F (T ) and n ∈ N arbitrarily. As S and T are
quasi-nonexpansive, from (18), it follows that

∥xn+1 − q∥ =
∥∥anyn + bnSzn + cnTwn + dnT

2wn − q
∥∥

=
∥∥an (yn − q) + bn (Szn − q) + cn (Twn − q) + dn

(
T 2wn − q

)∥∥
≤ an ∥yn − q∥+ bn ∥Szn − q∥+ cn ∥Twn − q∥+ dn

∥∥T 2wn − q
∥∥

≤ an ∥yn − q∥+ bn ∥zn − q∥+ cn ∥wn − q∥+ dn ∥Twn − q∥
≤ an ∥yn − q∥+ bn ∥zn − q∥+ cn ∥wn − q∥+ dn ∥wn − q∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥+ dn ∥xn − q∥
= ∥xn − q∥ .

This indicates that (20) holds true, as claimed. Consequently, we have the following: (1) {∥xn − q∥}
converges in R for all q ∈ F (S)∩ F (T ); (2) {xn} is bounded; (3) according to Lemma 2.3,

{
PF (S)∩F (T )xn

}
converges in F (S) ∩ F (T ). Define x̂ ≡ limn→∞ PF (S)∩F (T )xn.

We now prove that
yn − Szn → 0, yn − Twn → 0, and yn − T 2wn → 0. (21)
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Choose q ∈ F (S) ∩ F (T ) arbitrarily. Exploiting (17) and (18) yields

∥xn+1 − q∥2

=
∥∥an (yn − q) + bn (Szn − q) + cn (Twn − q) + dn

(
T 2wn − q

)∥∥2
≤ an ∥yn − q∥2 + bn ∥Szn − q∥2 + cn ∥Twn − q∥2 + dn

∥∥T 2wn − q
∥∥

−anbn ∥yn − Szn∥2 − ancn ∥yn − Twn∥2 − andn
∥∥yn − T 2wn

∥∥2
≤ an ∥yn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2 + dn ∥wn − q∥

−anbn ∥yn − Szn∥2 − ancn ∥yn − Twn∥2 − andn
∥∥yn − T 2wn

∥∥2
≤ a2n ∥xn − q∥+ b2n ∥xn − q∥+ c2n ∥xn − q∥+ dn ∥xn − q∥

−anbn ∥yn − Szn∥2 − ancn ∥yn − Twn∥2 − andn
∥∥yn − T 2wn

∥∥2
= ∥xn − q∥2 − anbn ∥yn − Szn∥2 − ancn ∥yn − Twn∥2 − andn

∥∥yn − T 2wn

∥∥2 .
Thus, it holds that

anbn ∥yn − Szn∥2 + ancn ∥yn − Twn∥2 + andn
∥∥yn − T 2wn

∥∥2
≤ ∥xn − q∥2 − ∥xn+1 − q∥2 .

As {∥xn − q∥} is convergent, the right-hand side converges to 0. From the hypotheses limn→∞anbn > 0,
limn→∞ancn > 0, and limn→∞andn > 0, we obtain (21), as claimed.

Next, we show that

zn − Szn → 0, wn − Twn → 0, and wn − T 2wn → 0. (22)

Using (19) and (21), we have

∥zn − Szn∥ ≤ ∥zn − xn∥+ ∥xn − yn∥+ ∥yn − Szn∥ → 0.

The part wn − Twn → 0 can be confirmed similarly. It follows that∥∥wn − T 2wn

∥∥ ≤ ∥wn − xn∥+ ∥xn − yn∥+
∥∥yn − T 2wn

∥∥ → 0.

Therefore, (22) holds, as asserted.
Our aim is to prove that xn ⇀ x̂

(
≡ limk→∞ PF (S)∩F (T )xk

)
. Choose a subsequence {xni} of {xn}

arbitrarily. As {xni} is bounded, there exists a subsequence
{
xnij

}
of {xni} such that xnij ⇀ p for some

p ∈ H. From (19), it holds that znij ⇀ p and wnij ⇀ p. As S is demiclosed (14) and T is 2-demiclosed (15),
from (22), we obtain p ∈ F (S) ∩ F (T ). Therefore, from (16), it follows that〈

xnij − PF (S)∩F (T )xnij , PF (S)∩F (T )xnij − p
〉
≥ 0

for all j ∈ N. As xnij ⇀ p and PF (S)∩F (T )xn → x̂, we have ⟨p− x̂, x̂− p⟩ ≥ 0. This implies that p = x̂. We
have shown that for any subsequence {xni} of {xn}, there exists a subsequence

{
xnij

}
of {xni} such that

xnij ⇀ p = x̂. This means that xn ⇀ x̂. This concludes the proof.

Remark 3.2. Here, two remarks are presented.

(i) Remind that a normally generalized hybrid mapping (4) with a fixed point is quasi-nonexpansive and
demiclosed (Proposition 2.1), and a normally 2-generalized hybrid mapping (12) with a fixed point is
quasi-nonexpansive and 2-demiclosed (Proposition 2.2). Thus, Theorem 3.1 can apply to those classes
of mappings.

(ii) As a demiclosed mapping is 2-demiclosed, the mapping T in Theorem 3.1 can also be viewed as
a nonexpansive mapping (1), a generalized hybrid mapping (3), or a normally generalized hybrid
mapping, rather than a normally 2-generalized hybrid mapping.
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In the proof of Theorem 3.1, the equality (17), which is derived from Lemma 2.4-(c), is exploited. The
following theorem can be established using Lemma 2.4-(d). The basic flow of the proof of the following
theorem is the same as the above theorem, we will omit it here:

Theorem 3.3. Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let S, T : C → C
be quasi-nonexpansive and 2-demiclosed mappings. Suppose that F (S) ∩ F (T ) ̸= ∅. Denote by PF (S)∩F (T )

the metric projection from H onto F (S) ∩ F (T ). Let {an}, {bn}, {cn}, {dn}, and {en} be sequences of
real numbers in the interval [0, 1] such that an + bn + cn + dn + en = 1 for all n ∈ N, limn→∞anbn > 0,
limn→∞ancn > 0, limn→∞andn > 0, and limn→∞anen > 0. Define a sequence {xn} in C as follows:

x1 ∈ C : given,

xn+1 = anyn + bnSzn + cnS
2zn + dnTwn + enT

2wn

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy

∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , and ∥wn − q∥ ≤ ∥xn − q∥ (23)

for all q ∈ F (S) ∩ F (T ) and n ∈ N and

xn − yn → 0 , xn − zn → 0 , and xn − wn → 0 . (24)

Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

4. Corollaries

Each Theorems 3.1 and 3.3 yields infinitely many iterative schemes that approximate common fixed
points of nonlinear mappings. This section presents some variations derived from these theorems, as illus-
trations. We begin with simple cases. Set yn = zn = wn = xn in Theorems 3.1 and 3.3. Then, the required
conditions (18) and (19) (equivalently, (23) and (24)) are fulfilled. By this operation, we obtain the following
two corollaries:

Corollary 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, let S : C → C
be a quasi-nonexpansive and demiclosed mapping, and let T : C → C be a quasi-nonexpansive and 2-
demiclosed mapping. Suppose that F (S) ∩ F (T ) ̸= ∅. Denote by PF (S)∩F (T ) the metric projection from H
onto F (S) ∩ F (T ). Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in the interval [0, 1] such
that an + bn + cn + dn = 1 for all n ∈ N, limn→∞anbn > 0, limn→∞ancn > 0, and limn→∞andn > 0. Define
a sequence {xn} in C as follows:

x1 ∈ C : given,

xn+1 = anxn + bnSxn + cnTxn + dnT
2xn

for all n ∈ N. Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

Corollary 4.2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let S, T : C →
C be quasi-nonexpansive and 2-demiclosed mappings. Suppose that F (S)∩F (T ) ̸= ∅. Denote by PF (S)∩F (T )

the metric projection from H onto F (S) ∩ F (T ). Let {an}, {bn}, {cn}, {dn}, and {en} be sequences of
real numbers in the interval [0, 1] such that an + bn + cn + dn + en = 1 for all n ∈ N, limn→∞anbn > 0,
limn→∞ancn > 0, limn→∞andn > 0, and limn→∞anen > 0. Define a sequence {xn} in C as follows:

x1 ∈ C : given,

xn+1 = anxn + bnSxn + cnS
2xn + dnTxn + enT

2xn

for all n ∈ N. Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.
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These results Corollaries 4.1 and 4.2 correspond Theorem 3.1 and 3.4 in Kondo and Takahashi [21],
respectively.

Next, setting yn = zn = wn and yn = λnxn + µnSxn + νnS
2xn + ξnTxn in Theorem 3.1, we obtain the

following:

Corollary 4.3. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, let S : C → C
be a quasi-nonexpansive and demiclosed mapping, and let T : C → C be a quasi-nonexpansive and 2-
demiclosed mapping. Suppose that F (S) ∩ F (T ) ̸= ∅. Denote by PF (S)∩F (T ) the metric projection from H
onto F (S) ∩ F (T ). Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in the interval [0, 1] such
that an + bn + cn + dn = 1 for all n ∈ N, limn→∞anbn > 0, limn→∞ancn > 0, and limn→∞andn > 0. Let
{λn}, {µn}, {νn}, and {ξn} be sequences of real numbers in the interval [0, 1] such that λn+µn+νn+ξn = 1
for all n ∈ N and λn → 1. Define a sequence {xn} in C as follows:

x1 ∈ C : given,

yn = λnxn + µnSxn + νnS
2xn + ξnTxn,

xn+1 = anyn + bnSyn + cnTyn + dnT
2yn

for all n ∈ N. Then, {xn} converges weakly to a point x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

Proof. According to Theorem 3.1, it is sufficient to prove that

∥yn − q∥ ≤ ∥xn − q∥ for all q ∈ F (S) ∩ F (T ) and n ∈ N and (25)

xn − yn → 0 as n → ∞. (26)

Choose q ∈ F (S) ∩ F (T ) and n ∈ N arbitrarily. As S and T are quasi-nonexpansive, it holds that

∥yn − q∥ =
∥∥λnxn + µnSxn + νnS

2xn + ξnTxn − q
∥∥

≤ λn ∥xn − q∥+ µn ∥Sxn − q∥+ νn
∥∥S2xn − q

∥∥+ ξn ∥Txn − q∥
≤ λn ∥xn − q∥+ µn ∥xn − q∥+ νn ∥xn − q∥+ ξn ∥xn − q∥
= ∥xn − q∥ .

This shows that (25) holds.
Using (25), we can verify that ∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ F (S) ∩ F (T ) and n ∈ N. Indeed, as S

and T are quasi-nonexpansive,

∥xn+1 − q∥ =
∥∥anyn + bnSyn + cnTyn + dnT

2yn − q
∥∥

≤ an ∥yn − q∥+ bn ∥Syn − q∥+ cn ∥Tyn − q∥+ dn
∥∥T 2yn − q

∥∥
≤ an ∥yn − q∥+ bn ∥yn − q∥+ cn ∥yn − q∥+ dn ∥yn − q∥
≤ ∥xn − q∥ .

From this, we can observe that {xn} is bounded.
As S and T are quasi-nonexpansive, {Sxn},

{
S2xn

}
, and {Txn} are also bounded. Indeed, for q ∈ F (S).

As S is quasi-nonexpansive, we have ∥∥S2xn
∥∥ ≤

∥∥S2xn − q
∥∥+ ∥q∥

≤ ∥Sxn − q∥+ ∥q∥
≤ ∥xn − q∥+ ∥q∥ .

As {xn} is bounded, {Sxn} and
{
S2xn

}
are also bounded. Similarly, it can be shown that {Txn} is bounded,

as asserted.
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Now, we observe that (26) is true. As λn → 1 is assumed, we have µn, νn, ξn → 0. As {Sxn},
{
S2xn

}
,

and {Txn} are bounded, it follows that

∥xn − yn∥ =
∥∥xn −

(
λnxn + µnSxn + νnS

2xn + ξnTxn
)∥∥

≤ (1− λn) ∥xn∥+ µn ∥Sxn∥+ νn
∥∥S2xn

∥∥+ ξn ∥Txn∥ → 0.

This indicates that (26) holds. Thus, the desired result follows from Theorem 3.1.

Setting S = I and yn = zn in Theorem 3.1 and adjusting notations, we obtain the following:

Corollary 4.4. Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let T : C → C
be a quasi-nonexpansive and 2-demiclosed mapping. Suppose that F (T ) ̸= ∅. Denote by PF (T ) the metric
projection from H onto F (T ). Let {an}, {bn}, and {cn} be sequences of real numbers in the interval [0, 1]
such that an + bn + cn = 1 for all n ∈ N, limn→∞anbn > 0 and limn→∞ancn > 0. Define a sequence {xn}
in C as follows:

x1 ∈ C : given, (27)

xn+1 = anyn + bnTwn + cnT
2wn

for all n ∈ N, where {yn} an {wn} are sequences in C that satisfy

∥yn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥

for all q ∈ F (T ) and n ∈ N,
xn − yn → 0 , and xn − wn → 0 .

Then, {xn} converges weakly to a point x̂ ∈ F (T ), where x̂ ≡ limn→∞ PF (T )xn.

Remark 4.5. We present two remarks.

(i) Compare Corollary 4.4 with Corollary 1.2. Although (27) and (8) seem similar, there are differences:
in (27), the sequence {wn} in terms of T and T 2 must be the same, unlike the case of (8).

(ii) Although Corollary 4.4 is derived from Theorem 3.1, it can also generate infinitely many iterative
schemes to locate fixed points of quasi-nonexpansive and 2-demiclosed mappings.

Other variations derived from the main theorems can be considered with reference to Kondo [14, 16, 17,
18, 19].

5. Appendix

In this section, as an appendix, we provide proofs of Propositions 2.1 and 2.2. Although they have
already been established in existing studies, we reproduce them for readers’ convenience.

Proof of Proposition 2.1.
Let T : C → H be a normally generalized hybrid mapping (4) that satisfies F (T ) ̸= ∅ with parameters

α, β, γ, δ ∈ R. First, we show that T is quasi-nonexpansive (13). Let x ∈ C and q ∈ F (T ). Assume that
α+ β > 0. Then, from the condition (4),

α ∥Tq − Tx∥2 + β ∥q − Tx∥2 + γ ∥Tq − x∥2 + δ ∥q − x∥2 ≤ 0. (28)

As q = Tq, we have
(α+ β) ∥Tx− q∥2 + (γ + δ) ∥x− q∥2 ≤ 0.
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As α+ β + γ + δ ≥ 0, it holds that

(α+ β) ∥Tx− q∥2 ≤ − (γ + δ) ∥x− q∥2

≤ (α+ β) ∥x− q∥2 .

Dividing by α+ β (> 0), we obtain ∥Tx− q∥2 ≤ ∥x− q∥2. In the case of α+ γ > 0, replacing the roles of x
and q in (28), we can also obtain ∥Tx− q∥ ≤ ∥x− q∥. Therefore, T is quasi-nonexpansive, as claimed.

Next, we demonstrate that T is demiclosed (14). Let {xn} be a sequence in C such that xn − Txn → 0
and xn ⇀ p. Note that as C is closed and convex, it is weakly closed. Thus, from xn ⇀ p, we have p ∈ C.
As T is a mapping from C into H, an element Tp (∈ H) exists. Our goal is to demonstrate that Tp = p.
Assume that α + β > 0. As T is a normally generalized hybrid mapping with parameters α, β, γ, δ ∈ R, it
holds that

α ∥Txn − Tp∥2 + β ∥xn − Tp∥2 + γ ∥Txn − p∥2 + δ ∥xn − p∥2 ≤ 0. (29)

This implies that

α
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩+ ∥xn − Tp∥2

)
+ β ∥xn − Tp∥2

+γ
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩+ ∥xn − p∥2

)
+ δ ∥xn − p∥2 ≤ 0.

Hence,

α
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+ (α+ β) ∥xn − Tp∥2

+γ
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
+ (γ + δ) ∥xn − p∥2 ≤ 0.

Therefore,

α
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+(α+ β)

(
∥xn − p∥2 + 2 ⟨xn − p, p− Tp⟩+ ∥p− Tp∥2

)
+γ

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
+ (γ + δ) ∥xn − p∥2 ≤ 0.

As α+ β + γ + δ ≥ 0, subtracting (α+ β + γ + δ) ∥xn − p∥2 (≥ 0) from the LHS, we obtain

α
(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+(α+ β)

(
2 ⟨xn − p, p− Tp⟩+ ∥p− Tp∥2

)
+γ

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
≤ 0.

Note that as {xn} weakly converges, it is bounded. Using xn − Txn → 0 and xn ⇀ p, we have

(α+ β) ∥p− Tp∥2 ≤ 0

as n → ∞. As we temporarily assume that α + β > 0, it follows that ∥p− Tp∥2 ≤ 0. This implies that
p ∈ F (T ). Replacing the roles of xn and p in (29), we can obtain the proof for the case α + γ > 0. This
completes the proof. □
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Proof of Proposition 2.2.
Let T : C → C be a normally 2-generalized hybrid mapping (12) with F (T ) ̸= ∅. We verify that T is

quasi-nonexpansive (13). Select x ∈ C and q ∈ F (T ) arbitrarily. According to the condition (12), there
exist α0, α1, α2, β0, β1, β2 ∈ R such that

∑2
i=0 (αi + βi) ≥ 0, α2 + α1 + α0 > 0, and

α2

∥∥T 2q − Tx
∥∥2 + α1 ∥Tq − Tx∥2 + α0 ∥q − Tx∥2

+β2
∥∥T 2q − x

∥∥2 + β1 ∥Tq − x∥2 + β0 ∥q − x∥2 ≤ 0.

As q ∈ F (T ), it holds that q = Tq = T 2q. Hence,

(α2 + α1 + α0) ∥Tx− q∥2 + (β2 + β1 + β0) ∥x− q∥2 ≤ 0.

Using
∑2

i=0 (αi + βi) ≥ 0, we have

(α2 + α1 + α0) ∥Tx− q∥2 ≤ − (β2 + β1 + β0) ∥x− q∥2

≤ (α2 + α1 + α0) ∥x− q∥2 .

Dividing by α2 + α1 + α0 (> 0) yields ∥Tx− q∥2 ≤ ∥x− q∥2, which indicates that T is quasi-nonexpansive.
Next, we demonstrate that T is 2-demiclosed (15). Assume that xn − Txn → 0, xn − T 2xn → 0, and

xn ⇀ p, where {xn} is a sequence in C. For the same reason as the proof of Proposition 2.1, it holds
that p ∈ C and consequently, Tp (∈ C) exists. We aim to demonstrate that Tp = p. As T is normally
2-generalized hybrid, it holds that

α2

∥∥T 2xn − Tp
∥∥2 + α1 ∥Txn − Tp∥2 + α0 ∥xn − Tp∥2

+β2
∥∥T 2xn − p

∥∥2 + β1 ∥Txn − p∥2 + β0 ∥xn − p∥2 ≤ 0.

From this,

α2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − Tp

〉
+ ∥xn − Tp∥2

)
+α1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩+ ∥xn − Tp∥2

)
+ α0 ∥xn − Tp∥2

+β2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − p

〉
+ ∥xn − p∥2

)
+β1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩+ ∥xn − p∥2

)
+ β0 ∥xn − p∥2 ≤ 0,

which implies

α2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − Tp

〉)
+α1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+ (α2 + α1 + α0) ∥xn − Tp∥2

+β2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − p

〉)
+β1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
+ (β2 + β1 + β0) ∥xn − p∥2 ≤ 0.

It follows that

α2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − Tp

〉)
+α1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+(α2 + α1 + α0)

(
∥xn − p∥2 + 2 ⟨xn − p, p− Tp⟩+ ∥p− Tp∥2

)
+β2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − p

〉)
+β1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
+ (β2 + β1 + β0) ∥xn − p∥2 ≤ 0.
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As
∑2

i=0 (αi + βi) ≥ 0, subtracting
(∑2

i=0 (αi + βi)
)
∥xn − p∥2 (≥ 0) from the LHS, we have

α2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − Tp

〉)
+α1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Tp⟩

)
+(α2 + α1 + α0)

(
2 ⟨xn − p, p− Tp⟩+ ∥p− Tp∥2

)
+β2

(∥∥T 2xn − xn
∥∥2 + 2

〈
T 2xn − xn, xn − p

〉)
+β1

(
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − p⟩

)
≤ 0.

Note that as {xn} is weakly convergent, it is bounded. Using xn − Txn → 0, xn − T 2xn → 0, and xn ⇀ p,
we obtain

(α2 + α1 + α0) ∥p− Tp∥2 ≤ 0

in the limit as n → ∞. Dividing by α2 + α1 + α0 (> 0), we have p ∈ F (T ). This ends the proof. □

Acknowledgements. The author would like to thank the Ryousui Academic Foundation and the
Institute for Economics and Business Research of Shiga University for financial support. The author would
also appreciate the two anonymous reviewers for their careful reading and comments.

Data availability. No data is associated with this study.

Conflict of interest. The authors have no conflicts of interest.

References

[1] K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert
spaces, J. Nonlinear Convex Anal. 11(2) (2010), 335–343.

[2] M. Asadi and E. Karapinar, Coincidence Point Theorem on Hilbert Spaces via Weak Ekeland Variational Principle and
Application to Boundary Value Problem, Thai J. Math., 19(1), 1–7.

[3] M. Hojo, Attractive point and mean convergence theorems for normally generalized hybrid mappings in Hilbert spaces, J.
Nonlinear Convex Anal. 18(12) (2017), 2209–2120.

[4] M. Hojo, S. Takahashi and W. Takahashi, Attractive point and ergodic theorems for two nonlinear mappings in Hilbert
spaces, Linear Nonlinear Anal. 3(2) (2017), 275–286.

[5] M. Hojo, W. Takahashi and I. Termwuttipong, Strong convergence theorems for 2-generalized hybrid mappings in Hilbert
spaces, Nonlinear Anal. 75(4) (2012), 2166–2176.

[6] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
[7] S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, Pacific J.

Math. 79(2) (1978), 493–508.
[8] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid

mappings in Hilbert Spaces, Taiwanese J. Math. 14(6) (2010), 2497–2511.
[9] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone

operators in Banach spaces, Arch. Math. 91(2) (2008), 166–177.
[10] A. Kondo, Convergence theorems using Ishikawa iteration for finding common fixed points of demiclosed and 2-demiclosed

mappings in Hilbert spaces, Adv. Oper. Theory 7(3) Article number: 26, (2022).
[11] A. Kondo, Generalized common fixed point theorem for generalized hybrid mappings in Hilbert spaces, Demonstr. Math. 55

(2022), 752–759.
[12] A. Kondo, Strong approximation using hybrid methods to find common fixed points of noncommutative nonlinear mappings

in Hilbert spaces, J. Nonlinear Convex Anal. 23(1) (2022), 33–58.
[13] A. Kondo, A generalization of the common fixed point theorem for normally 2-generalized hybrid mappings in Hilbert spaces,

Filomat, 37(26) (2023), 9051–9062.
[14] A. Kondo, Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert

spaces, Rend. Circ. Mat. Palermo, II. Ser, 72(2) (2023), 1417–1435.
[15] A. Kondo, Strong convergence theorems by Martinez-Yanes–Xu projection method for mean-demiclosed mappings in Hilbert

spaces, Rendiconti di Mat. e delle Sue Appl. 44(1-2) (2023), 27–51.
[16] A. Kondo, Strong convergence to common fixed points using Ishikawa and hybrid methods for mean-demiclosed mappings

in Hilbert spaces, Math. Model. Anal., 28(2) (2023), 285–307.



Atsumasa Kondo, Lett. Nonlinear Anal. Appl. 3 (2025), 105-118 118

[17] A. Kondo, Halpern-type strong convergence theorems using a multi-step mean-valued iterative method in Hilbert spaces, J.
Nonlinear Convex Anal. 25(11) (2024), 2703–2715.

[18] A. Kondo, On the iterative scheme generating methods using mean-valued sequences, Carpathian J. Math. 40(3) (2024),
819–840.

[19] A. Kondo, Iterative scheme generating method beyond Ishikawa iterative method, Math. Ann. 391(2) (2025), 2007–2028.
[20] A. Kondo and W. Takahashi, Attractive point and weak convergence theorems for normally N-generalized hybrid mappings

in Hilbert spaces, Linear Nonlinear Anal. 3 (2017), 297–310.
[21] A. Kondo and W. Takahashi, Approximation of a common attractive point of noncommutative normally 2-generalized hybrid

mappings in Hilbert spaces, Linear Nonlinear Anal. 5(2) (2019), 279–297.
[22] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
[23] T. Maruyama, W. Takahashi and M. Yao, Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert

spaces, J. Nonlinear Convex Anal. 12(1) (2011), 185–197.
[24] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251(1) (2000), 217–229.
[25] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67(2) (1979),

274–276.
[26] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11(1)

(2010), 79–88.
[27] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim.

Theory Appl., 118(2) (2003), 417–428.
[28] W. Takahashi, N.-C. Wong, and J.-C. Yao, Attractive point and weak convergence theorems for new generalized hybrid

mappings in Hilbert spaces, J. Nonlinear Convex Anal 13(4) (2012), 745–757.
[29] H. Zegeye and N. Shahzad, Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive

mappings, Comput. Math. Appl. 62(11) (2011), 4007–4014.


	Introduction
	Preliminaries
	Main Results
	Corollaries
	Appendix

