On the Order-theoretic Cantor Theorem of Granas and Horvath

Authors

  • Sehie Park The National Academy of Sciences, Republic of Korea, Seoul 06579; Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea Corresponding Author

Keywords:

Cantor theorem, fixed point theorem, pre-order, metric space, fixed point, stationary point, maximal element

Abstract

In 2000, Granas and Horvath published an order-theoretic version of the Cantor theorem based on the interplay of the notions of partial order and of completeness. This result gave a unified and simplified account to a long list of results related to the Bishop-Phelps theorem. In the present article, we obtain characterizations of their Cantor type theorem, that is, its equivalent formulations to maximality theorem, various types of collectively fixed point theorems and collectively stationary point theorems. We are based on our 2023 Metatheorem in the ordered fixed point theory and the Brøndsted-Jachymski principle recently due to ourselves.

References

A. Abian, A fixed point theorem equivalent to the axiom of choice, Arch. Math. Logik 25 (1985) 173-174.

E. Bishop, R.R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Amer. Math. Soc. 7 (1963) 27--35.

A. Brondsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974) 335--331.

A. Brondsted, Fixed point and partial orders, Shorter Notes, Proc. Amer. Math. Soc. 60 (1976) 365--366.

A. Brondsted, Common fixed points and partialx orders, Proc. Amer. Math. Soc. 77 (1979) 385--388.

J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976) 241--251.

S. Dancs, M. Hegedus, P. Medvegyev, A general ordering and fixed-point principle in complete metric space, Acta Sci. Math. (Szeged), 46 (1983) 381--388.

J. Danecs, A geometric theorem useful in nonlinear analysis, Boll. Unione Mat. Ital. 6 (1972) 369--372.

W.-S. Du, On some nonlinear problems induced by an abstract maximal element principle, J. Math. Anal. Appl. 347 (2008) 391--399.

J. Dugundji, A. Granas, Fixed Point Theory I, Polish Scientific Publishers, Warszawa, 1982.

I. Ekeland, Sur les problemes variationnels, C.R. Acad. Sci. Paris 275 (1972) 1057--1059; 276 (1973) 1347--1348.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324--353.

A. Granas, J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. xvi+690pp.

A. Granas, C.D. Horvath, On the order-theoretic Cantor theorem, Taiwan. J. Math. 4(2) (2000) 203--213.

J. Jachymski, Order-theoretic aspects of metric fixed point theory, Chapter 18 in: Handbook of Metric Fixed Point Theory (W.A. Kirk and B. Sims, eds.), Kluwer Academic Publ. (2001) 613--641.

J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Analysis 52 (2003) 1455--1463.

J. Jachymski, A stationary point theorem charaterizing metric completeness, Appl. Math. Lett. 24 (2011) 169--171.

J. Jachymski, J. Klima, Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle, J. Fixed Point Theory Appl. 18 (2016) 445--463.

H. Kneser, Eine direkte Ableitung des Zornschen lemmas aus dem Auswahlaxiom, Math. Z. 53 (1950) 110--113.

S.B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475--488.

M. Puacurar, I.A. Rus, Some remarks on the notations and terminology in the ordered set theory, Creat. Math. Inform. 20(2) (2011), ISSN 1843 - 441X

S. Park, Equivalents of various maximum principles, Results in Nonlinear Analysis 5(2) (2022) 169--174.

S. Park, Applications of various maximum principles, J. Fixed Point Theory 2022:3 (2022) 1--23. ISSN:2052--5338.

S. Park, Equivalents of ordered fixed point theorems of Kirk, Caristi, Nadler, Banach, and others, Adv. Th. Nonlinear Anal. Appl. 6(4)

(2022) 420--432.

S. Park, Foundations of ordered fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 61(2) (2022) 247--287.

S. Park, History of the metatheorem in ordered fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 62(2) (2023)

L. Pasicki, Partial metric, fixed points, variational principle, Fixed Point Theory, 17(2) (2016) 435--448.

W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed Point Theory and Applications (Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow, (1991), 397--406.

M. Turinici, A maximality principle on ordered metric space, Rev. Colombiana Math. 16 (1982) 115--124.

E. Zermelo, Neuer Beweis fur die Moglichkeit einer Wohlordnung, Math. Ann. 65 (1908) 107--128.

Downloads

Published

2024-02-19

Issue

Section

Articles