Computational analysis of Stagnation point flow of kerosine oil based hybrid Nanofluids over a porous plate comprising Radiation effect
Keywords:
Hybrid nanofluids, \(Al_{2}O_{3}+Cu+\) Kerosene oil, Simulation, Stagnation point flow, Porous surfaceAbstract
Numerous researchers worldwide have reported on the search for reliable methods to relate heat transfer to stagnation point flows. This paper studies the Hiemenz flow of a recently evolved hybrid nanofluid over a porous surface. To achieve the desired surface properties, kerosene oil is infused with nanoparticles of aluminum oxide and copper. Further, heat transfer due to isothermal radiation flux and dissipation by vicious means is examined. Supervising boundary value problems (BVPs) consist of partial differential equations (PDEs) which are transformed into ordinary differential equations (ODEs) through suitable similarity transformations. Infinite series solutions are obtained by the semi-analytic Homotopy analysis method (HAM), whereas numerical estimations are also conducted using the \(bvp4c\) collocation code. The software used to obtain the above solutions is MATHEMATICA and MATLAB, respectively. A graphical and tabular representation of the effects of parameter variations on dimensionless velocity, temperature, skin friction coefficient, and Nusselt number is included. It is found that the radiation parameter enhances convection. Moreover, the injection significantly improves surface drag measures of kerosene-based hybrid nano-oil, while suction at the surface positively affects heat transfer and improves it. Despite that, the rise in the porosity factor diminishes the drag coefficient range.
References
Hiemenz, K., The boundary layer on a straight circular cylinder immersed in the uniform flow of liquid, Dinglers Polytech. J., (1911), 326, 321-324.
Baig, N.; Kammakakam, I.; Falath, W., Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Adv. Mater., (2021), 2, 1821-1871.
Eastman, J. A.; Choi, U. S., Li, S., Thompson, L. J.; Lee, S., Enhanced thermal conductivity through the development of nanofluids, MRS Online Proceedings Library (OPL), (1996), 457.
Jana, S.; Salehi-Khojin, A.; Zhong, W. H., Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta, (2007), 462, 45-55.
Shah, Z.; Babazadeh, H.; Kumam, P.; Shafee, A.; Thounthong, P., Numerical simulation of magnetohydrodynamic nanofluids under the influence of shape factor and thermal transport in a porous media using CVFEM, Front. Phys., (2019), 7, 164.
Yu, W.; Xie, H.; Chen, L.; Li, Y., Enhancement of thermal conductivity of kerosene-based F e3O4 nanofluids prepared via phase-transfer method, Colloids Surf. A Physicochem. Eng. Asp., (2010), 355, 109-113.
Bachok, N.; Ishak, A.; Nazar, R.; Senu, N., Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid, Bound. Value Probl., (2013), 2013, 1-10.
Shafiq, A.; Zari, I.; Khan, I.; Khan, T. S.; Seikh, A. H.; Sherif, E. S. M., Marangoni-driven boundary layer flow of carbon nanotubes toward a Riga plate, Front. Phys., (2020), 7, 215.
Waini, I.; Ishak, A.; Pop, I, Hiemenz flow over a shrinking sheet in a hybrid nanofluid, Results Phys., (2020), 19, 103351.
Shah, N. A.; Wakif, A.; El-Zahar, E. R.; Ahmad, S.; Yook, S. J., Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG),(40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., (2022), 35, 102046.
Oreyeni, T.; Shah, N. A.; Popoola, A. O.; Elzahar, E. R.; Yook, S. J., The significance of exponential space-based heat generation and variable thermophysical properties on the dynamics of Casson fluid over a stratified surface with non-uniform thickness, Waves. Random. Complex. Media., (2022), 1-19.
Rasool, G.; Shah, S. Z. H.; Sajid, T.; Jamshed, W.; Cieza Altamirano, G.; Keswani, B.; Sánchez-Chero, M., Spectral Relaxation Methodology for Chemical and Bioconvection Processes for Cross Nanofluid Flowing around an Oblique Cylinder with a Slanted Magnetic Field Effect, Coatings, (2022), 12, 1560.
Batool, S.; Rasool, G.; Alshammari, N.; Khan, I.; Kaneez, H.; Hamadneh, N., Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach, Case Stud. Therm. Eng., (2022), 37, 102233.
Priyadharshini, P.; Archana, M. V.; Ahammad, N. A.; Raju, C. S. K.; Yook, S. J.; Shah, N. A., Gradient descent machine learning regression for MHD flow: Metallurgy process, Int. Commun. Heat Mass Transf., (2022), 138, 106307.
Jamil, F.; Ali, H. M., Applications of hybrid nanofluids in different fields. In Hybrid nanofluids for convection heat transfer, Academic Press., (2020), 215-254.
Eid, M. R.; Nafe, M. A., Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition, Waves. Random. Complex. Media., (2022), 32, 1103-1127.
Zari, I.; Ali, F.; Khan, T. S.; Shafiq, A., Radiative Hiemenz flow towards a stretching Riga plate in hybrid nanofluid, Int. Commun. Heat Mass Transf., (2022), 139, 106492.
Farhana, K.; Kadirgama, K.; Rahman, M. M.; Noor, M. M.; Ramasamy, D.; Samykano, M.; Tarlochan, F., Significance of alumina in nanofluid technology, J. Therm. Anal. Calorim., (2019), 138, 1107-1126.
Devi, S. U.; Devi, S. A., Heat transfer enhancement of Cu − Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Nigerian Math. Soc., (2017), 36, 419-433.
Khatun, S.; Islam, M. M.; Mollah, M. T.; Poddar, S.; Alam, M. M., EMHD radiating fluid flow along a vertical Riga plate with suction in a rotating system, SN Appl. Sci., (2021), 3, 1-14.
Zainal, N. A.; Nazar, R.; Naganthran, K.; Pop, I., Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface, Neural. Comput. Appl., (2021), 1-11.
Khan, W. A.; Pop, I. M., Boundary layer flow past a stretching surface in a porous medium saturated by a nanofluid: Brinkman-Forchheimer model, (2012).
Nasir, S.; Shah, Z.; Islam, S.; Khan, W.; Bonyah, E.; Ayaz, M.; Khan, A., Three-dimensional Darcy-Forchheimer radiated flow of single and multiwall carbon nanotubes over a rotating stretchable disk with convective heat generation and absorption, AIP Adv., (2019), 9, 035031.
Zari, I.; Shafiq, A.; Khan, T. S., Simulation study of Marangoni convective flow of kerosene oil based nanofluid driven by a porous surface with suction and injection, Int. Commun. Heat Mass Transf., 2021, 127, 105493.
Zari, I.; Gul, T.; Dosmagulova, K.; Saee, T.; Haq, S, Heat transfer analysis of Radiative-Marangoni Convective flow in nanofluid comprising Lorentz forces and porosity effects, Advances in the Theory of Nonlinear Analysis and its Applications, 2023, 7(1), 61-81.
Rasool, G.; Wakif, A.; Wang, X; Shafiq, A.; Chamkha, A. J., Numerical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface, Alex. Eng. J., (2023), 68, 747-762.
Rasool, G.; Wang, X.; Yashkun, U.; Lund, L. A.; Shahzad, H., Numerical treatment of Hybrid Water Based Nanofluid flow with Effect of Dissipation and Joule Heating Over a Shrinking Surface: Stability Analysis, J. Magn. Magn., (2023), 170587.
Fuqiang, W.; Xinping, Z.; Yan, D.; Hongliang, Y.; Shi, X.; Yang, L.; Ziming, C., Progress in radiative transfer in porous medium: a review from macro scale to pore scale with experimental test, Appl. Therm. Eng., (2022), 118331.
Omowaye, A. J.; Fagbade, A. I.; Ajayi, A. O., Dufour and soret effects on steady MHD convective flow of a fluid in a porous medium with temperature dependent viscosity: Homotopy analysis approach, J. Niger. Soc. Math., (2015), 34, 343-360.
Alzahrani, A. K., Ullah, M. Z., Alshomrani, A. S.; Gul, T., Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation, Case Stud. Therm. Eng., (2021) 26, 100955.
Zubair, M.; Jawad, M.; Bonyah, E.; Jan, R., MHD Analysis of Couple Stress Hybrid Nanofluid Free Stream over a Spinning Darcy-Forchheimer Porous Disc under the Effect of Thermal Radiation, J. Appl. Math., (2021).
Rasool, G.; Shah, N. A.; El-Zahar, E. R.; Wakif, A., Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws, Waves. Random. Complex. Media., (2022), 1-20.
Joshi, N.; Upreti, H.; Pandey, A. K., MHD Darcy-Forchheimer Cu − Ag/H2O − C2H6O2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation, Int. J. Comput. Methods Eng., (2022), 1-9.
Hosseinzadeh, K.; Asadi, A.; Mogharrebi, A. R.; Azari, M. E.; Ganji, D. D., Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect, J. Therm. Anal. Calorim., (2021), 143, 1081-1095.
Altaie, S. A.; Anakira, N.; Jameel, A.; Ababneh, O.; Qazza, A.; Alomari, A. K., Homotopy Analysis Method Analytical Scheme for Developing a Solution to Partial Differential Equations in Fuzzy Environment, Fractal. Fract., (2022), 6, 419.
Zhao, Y.; Lin, Z.; Liao, S. A modified homotopy analysis method for solving boundary layer equations, Appl. Math. (2013), 4, 11-15.
Dinarvand, S., Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model, Microsyst. Technol., 2019, 25, 2609-2623.
Kierzenka, J.; Shampine, L. F., A BVP solver that controls residual and error, JNAIAM J. Numer. Anal. Ind. Appl. Math, (2008), 3, 27-41.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.