Improving Many Metric Fixed Point Theorems
Keywords:
Quasi-metric space, fixed point, RHR contraction principle, orbitally complete, orbitally continuousAbstract
We found that many metric fixed point theorems hold for orbitally complete quasi-metric spaces. In order to show this, we obtain several basic principles extending the Banach contraction principle and new fixed point theorems for the Rus-Hicks-Rhoades maps with a large number of their consequences. Moreover, we improve theorems on mappings with contractive conditions with some auxiliary functions and on mappings with asymptotically regularity. Consequently, a large number of known metric fixed point theorems are extended with almost trivial short proofs.References
S. Park, Relatives of a theorem of Rus-Hicks-Rhoades, Lett. Nonlinear Anal. Appl. 1(2) (2023) 57–63.
S. Park, All metric fixed point theorems hold for quasi-metric spaces, Results in Nonlinear Analysis 6(4) (2023) 116–127. https://doi.org/10.31838/rna/2023.06.04.012 (Dec. 1, 2023). A revised and corrected version appears in Research Gate.
S. Park, The use of quasi-metric in the metric fixed point theory, to appear.
S. Park, Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces, Adv. Th. Nonlinear Anal. Appl. 7(2) (2023) 455–471. DOI 0.31197/atnaa.1185449
S. Park, Comments on the Suzuki type fixed point theorems, Adv. Theory Nonlinear Anal. Appl. 7(3) (2023) 67–78. https://doi.org/10.17762/atnaa.v7.i3.275
S. Park, The realm of the Rus-Hicks-Rhoades maps in the metric fixed point theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 63(1) (2024) 1–45.
B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257–290.
S.-S. Chang, On Rhoades’ open questions and some fixed point theorems for a class of mappings, Proc. Amer. Math. Soc. 97(2) (1986) 343–346.
M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 2012:210, 2012.
H.H. Alsulami, E. Karapinar, F. Khojasteh, A.-F. Roldan-Lopez-de-Hierro, A proposal to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and Society (2014), Article ID 269286, 10pp.
W.A. Kirk, Contraction mappings and extensions. Chapter 1, Handbook of Metric Fixed Point Theory (W.A. Kirk and B. Sims, eds.), Kluwer Academic Publ. (2001) 1–34.
S. Park, On general contractive type conditions, J. Korean Math. Soc. 17 (1980) 131–140.
T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869.
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71–76.
S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(1) (1971) 121–124.
G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16(2) (1973) 201–206.
Lj. B. Ćirić, On some maps with a non-unique fixed point, Publ. Inst. Math. 17 (1974) 52–58.
Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45(2) (1974) 267- 273.
P.V. Subramanyam, Remarks on some fixed point theorems related to Banach’s contraction principle, J. Malh. Phys. Sri. 8 (1974) 445-457: Erratum, 9 (1975) 195.
B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math., 6 (1975) 1455–1458.
D. S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8 (1977) 223–230.
B.E. Rhoades, A fixed point theorem for some non-self-mappings, Math. Japon. 23(4) (1978/79) 457–459.
T.L. Hicks, B.E. Rhoades, A Banach type fixed point theorem, Math. Japon. 24 (1979) 327–330.
J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Analysis 52 (2003) 1455–1463.
B.G. Pachpatte, On Ćirić type maps with a non-unique fixed point, Indian J. Pure Appl. Math. 10 (1979) 1039–1043.
S. Park, A unified approach to fixed points of contractive maps, J. Korean Math. Soc. 16 (1980) 95–105.
S. Park, B.E. Rhoades, Some general fixed point theorems, Acta Sci. Math. 42 (1980) 299-304.
R. Srivastava, Fixed point theorems in a T-orbitally complete metric space, Math. Student 64 (1995) 15–20.
B.E. Rhoades, A biased discussion of fixed point theory, Carpathian J. Math. 23(1-2) (2007) 11–26.
W.A. Kirk, L.M. Saliga, Some results on existence and approximation in metric fixed point theory, J. Comp. Appl. Math. 113 (2000) 141–152.
V. Berinde, On the approximation of fixed points of weak contractive mappings, Carphathian J. Math. 19(1) (2003) 7–22.
V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9(1) (2004) 43–53.
T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat. 45 (2005) 45–58.
M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. TMA 69(9) (2008) 2942–2949.
Y. Enjouji, M. Nakanishi, T. Suzuki, A generalization of Kannan’s fixed point theorem, Fixed Point Theory Appl. (2009), Article ID 192872, 10pp. doi:10.1155/2009/192872
M. Nakanishi, T. Suzuki, An observation on Kannan mappings, Cent. Eur. J. Math. 8(1) (2010) 170-178. DOI: 10.2478/s11533-009-0065-9
I. Altun, A. Erduran, A Suzuki type fixed point theorem, Inter. J. Math. Math. Sci. 2011, Article ID 736063, 9pp. doi:10.1155/2011/736063
E. Karapinar, A new non-unique fixed point theorem, J. Appl. Funct. Anal. 7(1-2) (2012) 92–97.
S. Chandok, T.D. Narang, M.-A. Taoudi, Fixed point theorem for generalized contractions satisfying rational type expressions in partially ordered metric spaces, Gulf J. Math. 2(4) (2014) 87–93.
P. Kumam, N.V. Dung, K. Sitthithakerngkiet, A generalization of Ćirić fixed point theorems, Filomat 29(7) (2015) 1549–1556. DOI 10.2298/FIL1507549K
V.V. Nalawade, U.P. Dolhare, Another Kannan version of Suzuki fixed point theorem, Inter. J. Math. Trends and Technology (IJMTT) 36(2) (2016) 110–115. ISSN: 2231-5373
I.A. Rus, Some problems in the fixed point theory, Adv. Theory Nonlinear Anal. Appl. 2(1) (2018) 1–10. doi.org/10.31197/atnaa.379280
I.A. Rus, Relevant classes of weakly Picard operators, An. Univ. Vest Timioara, Mat.-Inform., 54(2) (2016) 3–9.
J.-J. Miñana, O. Valero, Are fixed point theorems in G-metric spaces an authentic generalization of their classical counter parts? J. Fixed Point Theory Appl. (2019) 21:70. doi.org/10.1007 /s11784-019-0705-z
V. Berinde, M. Păcurar, Alternative proofs of some classical metric fixed point theorems by using approximate fixed point sequences, Arab. J. Math., Published online 29 September 2022. https://doi.org/10.1007/s40065-022-00398-6
N. Chandra, B. Joshi, M.C. Joshi, Generalized fixed point theorems on metric spaces, Mathematica Moravica 26(2) (2022) 85–101.
E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962) 459–465.
F.E. Browder, On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968) 27–35.
D. Boyd, J. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604–608,
S. Kasahara, Generalizations of Hegedus’ fixed point theorem, Math. Sem. Notes, 7 (1979) 107–111.
R.K. Bisht, An overview of the emergence of weaker continuity notions, various classes of contractive mappings and related fixed point theorems, J. Fixed Point Theory Appl. (2023) 25:11. https://doi.org/10.1007/s11784-022-01022-y
M.R. Tasković, Some results in the fixed point theory-II, Publ. Inst, Math. 41 (1980) 249–258.
W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. TMA 5 (1981) 21–25.
B.E. Rhoades, Using general principles to prove fixed point theorems, Ann. Univ. Mariae Curie-Skłodowska LI.2, 22 A (1997) 241–260.
M. Akkouch, On a result of W.A. Kirk and L.M. Saliga, J. Comp. Appl. Math. 142 (2002) 445–448.
P.D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Analysis 67 (2007) 2361–2369.
Lj. B. Ćirić, On contraction type mappings. Math. Balkanica 1 (1971) 52–57.
P.D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64(3) (2006) 546–557.
J. Górnicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl. 19 (2017) 2145–2152. DOI 10.1007/s11784-017-0402-8
J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl. 21(29) (2019)
R.K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl. (2019) 21:54. https://doi.org/10.1007/s11784-019-0695-x
10 S. Panja, K. Roy, M. Saha, R.K. Bisht, Some fixed point theorems via asymptotic regularity, Filomat 34(5) (2020) 1621–1627
B.E. Rhoades, Contractive definitions revisited, Topological Methods in Nonlinear Functional Analysis, Contemporary Math., Vol. 21, Amer. Math. Soc, Providence, R. I. (1983) 189–205.
A. Pant, R.P. Pant, Fixed points and continuity of contractive maps. Filomat Filomat 31(11) (2017) 3501–3506.
P.D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, JFPTA 22(1) (2020) p.21.
R. Pant, D. Khantwal, Fixed points of single and multivalued mappings in metric spaces with applications, Preprint. 2023
K. Roy, Fixed point approach through simulation function and asymtotic regularity, U.P.B. Sci. Bull., Series A 86(1) (2024) 87-94. ISSN 1223-7027
I.A. Rus, Teoria punctului fix, II, Univ. Babes-Bolyai, Cluj, 1973.
V. Berinde, A. Petrus¸el, I.A, Rus, Remarks on the terminology of the mappings in fixed point iterayive in metric spaces, Fixed Point Theory 24(2) (2023) 525–540. DOI: 10.24193/fpt-ro.2023.2.05
S. Cobzaş, Fixed points and completeness in metric and generalized metric spaces, Jour. Math. Sci. 250(3) (2020) 475–535. DOI 10.1007/s10958-020-05027-1
S. Park, Several recent episodes on the metric completeness, Research Gate on Jan. 11, 2024
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.