On Periodic Solutions for Coupled Systems with Caputo Tempered Fractional Derivative

Authors

  • Djilali Benzenati Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, P.O. Box 89 Sidi Bel-Abbes 22000, Algeria; Department of Mathematics, Faculty of Exact Sciences and Informatics, University Hassiba Benbouali of Chlef, Algeria
  • Soufyane Bouriah Department of Mathematics, Faculty of Exact Sciences and Informatics, University Hassiba Benbouali of Chlef, Algeria; Laboratory of Mathematics and Applications, Hassiba Benbouali University of Chlef, Hay Salem, P.O. Box 151 Chlef, Algeria
  • Abdelkrim Salim Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, P.O. Box 89 Sidi Bel-Abbes 22000, Algeria; Faculty of Technology, Hassiba Benbouali University of Chlef, P.O. Box 151 Chlef 02000, Algeria Corresponding Author
  • Mouffak Benchohra Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, P.O. Box 89 Sidi Bel-Abbes 22000, Algeria

Keywords:

Coincidence degree theory, existence, uniqueness, Tempered fractional operators, coupled system

Abstract

The main goal of this paper is to study the existence and uniqueness of periodic solutions for coupled system with Caputo tempered  fractional derivative. The proofs are based upon the coincidence degree theory of Mawhin. An example is constructed to authenticate and affirm the main findings.

References

R. Almeida, M. L. Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math. 361 (2019), 1-12.

M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.

M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023.

D. Benzenati, S. Bouriah, A. Salim and M. Benchohra, On periodic solutions for some nonlinear fractional pantograph problems with Ψ-Hilfer derivative, Lobachevskii J. Math. 44 (2023), 1264-1279. https://doi.org/10.1134/S1995080223040054

S. Bouriah, D. Foukrach, M. Benchohra, and J. Graef; Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with ψ−Caputo derivative. Arab. J. Math. 10 (3) (2021), 575-587.

R. G. Buschman, Decomposition of an integral operator by use of Mikusinski calculus, SIAM J. Math. Anal. 3 (1972), 83-85.

M. Chohri, S. Bouriah, A. Salim and M. Benchohra, On nonlinear periodic problems with Caputo’s exponential fractional derivative, ATNAA. 7 (2023), 103-120. https://doi.org/10.31197/atnaa.1130743

R.E. Gaines, J. Mawhin, coincidence degree and nonlinear differential equations, Lecture Notes in Math., Springer-Verag, Berlin, 1977.

R. Herrmann, Fractional Calculus: An Introduction for Physicists. Singapore: World Scientific Publishing Company, 2011.

S. Krim, A. Salim and M. Benchohra, Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay. Filomat. 37 (22) (2023), 7491-7503. https://doi.org/10.2298/FIL2322491K

S. Krim, A. Salim and M. Benchohra, On implicit Caputo tempered fractional boundary value problems with delay. Lett. Nonlinear Anal. Appl. 1 (1) (2023), 12-29. https://doi.org/10.5281/zenodo.7682064

C. Li, W. Deng and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional differential equations, Discr. Contin. Dyn. Syst. Ser. B. 24 (2019), 1989-2015.

A. Mali, K. Kucche, A. Fernandez, H. Fahad, On tempered fractional calculus with respect to functions and the associated fractional differential equations. Math. Methods Appl. Sci. (2022), 1-24.

J. Mawhin, NSFCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.

M. Medved and E. Brestovanska, Differential Equations with Tempered ψ-Caputo Fractional Derivative, Math. Model. Anal. 26 (2021), 631-650.

N. A. Obeidat, D. E. Bentil, New theories and applications of tempered fractional differential equations, Nonlinear Dyn. 105 (2021), 1689-1702.

D. O’Regan, Y.J. Chao and Y.Q. Chen, Topological Degree Theory and Application, Taylor and Francis Group, Boca Raton, London, New York, 2006.

F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14-28.

A. Salim and M. Benchohra, A study on tempered (k, ψ)-Hilfer fractional operator, Lett. Nonlinear Anal. Appl. 1 (3) (2023), 101-121. https://doi.org/10.5281/zenodo.8361961

A. Salim, M. Benchohra and J. E. Lazreg, On implicit k-generalized ψ-Hilfer fractional differential coupled systems with periodic conditions, Qual. Theory Dyn. Syst. 22 (2023), 46 pages. https://doi.org/10.1007/s12346-023-00776-1

A. Salim, S. Bouriah, M. Benchohra, J. E. Lazreg and E. Karapınar, A study on k-generalized ψ-Hilfer fractional differential equations with periodic integral conditions. Math. Methods Appl. Sci. (2023), 1-18. https://doi.org/10.1002/mma.9056

A. Salim, S. Krim, J. E. Lazreg and M. Benchohra, On Caputo tempered implicit fractional differential equations in b-metric spaces. Analysis. 43 (2) (2023), 129-139. https://doi.org/10.1515/anly-2022-1114

S. G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

B. Shiri, G. Wu and D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math. 156 (2020), 385-395.

Downloads

Published

2024-06-19

Issue

Section

Articles