On some properties of the alpha-order and the weight distribution functions

Authors

  • Antonio Francisco Roldán López de Hierro University of Granada
  • Fernando Neres Departamento de Ciência e Tecnologia, Universidade Federal Rural do Semi-Árido, Caraúbas, Rio Grande do Norte, Brazil
  • Regivan H.N. Santiago Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
  • Diego García-Zamora Department of Computing, University of Jaén, Jaén, Spain
  • Anderson Cruz Instituto Metropóle Digital, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
  • Javier Fernández Departamento de Estadística, Informática y Matemáticas, Universidad P´ublica de Navarra, Pamplona, Navarra, Spain
  • Humberto Bustince Departamento de Estadística, Informática y Matemáticas, Universidad P´ublica de Navarra, Pamplona, Navarra, Spain

Keywords:

fuzzy set, Fuzzy number, alpha-order, aggregation function,, binary relation

Abstract

In this paper, we describe how it can be applied the \(\alpha\)-order to any fuzzy sets in a great class \(\mathscr{C}\) of fuzzy sets. Before that, we introduce the algebraic tools that are underlying to this construction, and we detail the mentioned class of fuzzy sets of the real line that can be ranked by using such fuzzy binary relation. Furthermore, we introduce some new properties both of the weight distribution functions and of the \(\alpha\)-orders. For the sake of completeness, we illustrate all processes by showing examples enough.

References

L.A. Zadeh. Fuzzy set. Inf. Control 8 (1965) 338-353.

H. Bustince, E. Barrenechea, M. Pagola, J. Fern´andez, Z. Xu, B. Bedregal, J. Montero, H. Hagras, F. Herrera, B. de Baets. A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24 (2016) 179-194.

R. Goetschel, W. Voxman. Elementary fuzzy calculus. Fuzzy Sets Syst. 18 (1986) 31-43.

M. Ma, M. Friedman, A. Kandel. A new fuzzy arithmetic. Fuzzy Sets Syst. 108 (1999) 83-90.

B. Bede. Fuzzy Numbers. In: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol 295, 2013, Springer, Berlin, Heidelberg.

D. Dubois, H. Prade. Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (3) (1978) 613-626.

D. Dubois, H. Prade. Fuzzy sets and systems: Theory and applications. Academic Press, New York, 1980.

S.E. Rodabaugh. Categorical foundations of variable-basis fuzzy topology. Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Hohle and S. E. Rodabaugh, eds.), The Handbooks of Fuzzy Sets Series, vol. 3, Dordrecht: Kluwer Academic Publishers, 273-388, 1999.

J. Vicente Riera, J. Torrens. Aggregation of subjective evaluations based on discrete fuzzy numbers. Fuzzy Sets Syst. 191 (2012) 21-40.

W. Voxman. Canonical representations of discrete fuzzy numbers. Fuzzy Sets Syst. 118 (2001) 457-466.

A.I. Ban, L. Coroianu. Simplifying the search for effective ranking of fuzzy numbers. IEEE Trans. Fuzzy Syst. 23 (2) (2015) 327-339.

M. Brunelli, J. Mezei. How different are ranking methods for fuzzy numbers? A numerical study. Int. J. Approx. Reason. 54 (2013) 627-639.

A.F. Roldán López de Hierro, C. Roldán, F. Herrera. On a new methodology for ranking fuzzy numbers and its application to real economic data. Fuzzy Sets Syst. 353 (2018) 86-110.

A.F. Roldán López de Hierro, J. Martínez-Moreno, C. Roldán. Some applications of the study of the image of a fuzzy number: Countable fuzzy numbers, operations, regression and a specificity-type ordering. Fuzzy Sets Syst. 257 (2014) 204-216.

F. Neres, R.H.N. Santiago, A.F. Roldán López de Hierro, A. Cruz, Z. Takac, J. Fernández, H. Bustince. The alpha-ordering for a wide class of fuzzy sets of the real line: the particular case of fuzzy numbers. Comput. Appl. Math. 43 (2024), art. no. 12, 1-30.

D. García-Zamora, A. Cruz, F. Neres, A.F. Roldán López de Hierro, R.H.N. Santiago, H. Bustince. On the admissibility of the alpha-order for fuzzy numbers. Comp. Appl. Math. 43, 383 (2024).

P.C. Fishburns. Utility theory for decision making. John Wiley & Sons, Inc., New York, 1970.

G. Beliakov, A. Pradera, T. Calvo. Aggregation functions: A guide for practitioners. Studies in Fuzziness and Soft Computing, 2007.

A.F. Roldán López de Hierro, A. Cruz, R.H.N. Santiago, C. Roldán, D. García-Zamora, F. Neres, H. Bustince. Fuzzy dissimilarities and the fuzzy Choquet integral of triangular fuzzy numbers on [0, 1]. Accepted for publication.

Downloads

Published

2024-09-12

Issue

Section

Articles