Polynomial Contractions in G-metric Spaces

Authors

  • Priya Shahi Jaypee Institute of Information Technology

Keywords:

fixed point, contracting perimeters of triangles, polynomial contractions, G-metric

Abstract

 In this paper, we introduce these two new classes of polynomial contractions in the setting of G-metric spaces. Our results refine, generalize, and improve several corresponding results in the existing literature. Some examples are presented to validate the originality and applicability of our main results.

Author Biography

  • Priya Shahi, Jaypee Institute of Information Technology

    Department of Mathematics, Jaypee Institute of Information Technology, Noida, India

References

[1] R. P. Agarwal, E. Karapınar, Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013(2), 133 (2013).

[2] R. P. Agarwal, E. Karapınar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Switzerland, 2016.

[3] M. Asadi, E. Karapınar and P. Salimi, A new approach to G-metric and related fixed point theorems. J.Inequal. Appl. 2013(454), 114 (2013).

[4] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund Math. 3 (1922) 133181.

[5] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9 (1) (2004) 4353.

[6] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007.

[7] M. Jleli, C. M. Pacurar and B. Samet, New directions in fixed point theory in G-metric spaces and applications to mappings contracting perimeters to triangles. https://doi.org/10.48550/arXiv.2405.11648

[8] M. Jleli, C. M. Pacurar and B. Samet, Fixed point results for contractions of polynomial type. https://doi.org/10.48550/arXiv.2406.03446

[9] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory and Applications (2012)2012:210.

[10] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly. 76 (1969) 405408.

[11] E. Karapınar and R.P. Agarwal, Further remarks on G-metric spaces. Fixed Point Theory Appl. 2013(154), 114 (2013).

[12] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Switzerland, 2014.

[13] E. Malkowsky and V. Rakocevic, Advanced Functional Analysis, CRC Press, Boca Raton, FL, 2019

[14] Z. Mustafa, H. Aydi and E. Karapınar, On common fixed points in G-metric spaces using (E.A) property, Comput. Math. Appl. 64, 19441956 (2012).

[15] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.

[16] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis. 7(2) (2006) 289297.

[17] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 917175.

[18] E. Petrov, Fixed point theorem for mappings contracting perimeters of triangles. Fixed Point Theory Appl. 25 (2023) 111.

[19] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971) 121124.

[20] A. Roldan and E. Karapınar, Some multidimensional fixed point theorems on partially preordered G*-metric spaces under ($psi; phi$)-contractivity conditions, Fixed Point Theory Appl. 2013(158), 121 (2013).

[21] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.

[22] I. A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.

[23] B. Samet, C. Vetro, and F. Vetro, Remarks on G-metric spaces, Int. J. Anal. 2013 (2013) 16.

Downloads

Published

2024-09-25

Issue

Section

Articles