Polynomial Contractions in G-metric Spaces
Keywords:
fixed point, contracting perimeters of triangles, polynomial contractions, G-metricAbstract
In this paper, we introduce these two new classes of polynomial contractions in the setting of G-metric spaces. Our results refine, generalize, and improve several corresponding results in the existing literature. Some examples are presented to validate the originality and applicability of our main results.
References
[1] R. P. Agarwal, E. Karapınar, Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013(2), 133 (2013).
[2] R. P. Agarwal, E. Karapınar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Switzerland, 2016.
[3] M. Asadi, E. Karapınar and P. Salimi, A new approach to G-metric and related fixed point theorems. J.Inequal. Appl. 2013(454), 114 (2013).
[4] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund Math. 3 (1922) 133181.
[5] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9 (1) (2004) 4353.
[6] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007.
[7] M. Jleli, C. M. Pacurar and B. Samet, New directions in fixed point theory in G-metric spaces and applications to mappings contracting perimeters to triangles. https://doi.org/10.48550/arXiv.2405.11648
[8] M. Jleli, C. M. Pacurar and B. Samet, Fixed point results for contractions of polynomial type. https://doi.org/10.48550/arXiv.2406.03446
[9] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory and Applications (2012)2012:210.
[10] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly. 76 (1969) 405408.
[11] E. Karapınar and R.P. Agarwal, Further remarks on G-metric spaces. Fixed Point Theory Appl. 2013(154), 114 (2013).
[12] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Switzerland, 2014.
[13] E. Malkowsky and V. Rakocevic, Advanced Functional Analysis, CRC Press, Boca Raton, FL, 2019
[14] Z. Mustafa, H. Aydi and E. Karapınar, On common fixed points in G-metric spaces using (E.A) property, Comput. Math. Appl. 64, 19441956 (2012).
[15] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.
[16] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis. 7(2) (2006) 289297.
[17] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 917175.
[18] E. Petrov, Fixed point theorem for mappings contracting perimeters of triangles. Fixed Point Theory Appl. 25 (2023) 111.
[19] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971) 121124.
[20] A. Roldan and E. Karapınar, Some multidimensional fixed point theorems on partially preordered G*-metric spaces under ($psi; phi$)-contractivity conditions, Fixed Point Theory Appl. 2013(158), 121 (2013).
[21] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[22] I. A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
[23] B. Samet, C. Vetro, and F. Vetro, Remarks on G-metric spaces, Int. J. Anal. 2013 (2013) 16.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.