Brouwer fixed point theorem in strictly star-shaped sets
Keywords:
Brouwer fixed point, Star-shaped, retraction, contractible, homotopy groupsAbstract
In this note, we show that the Brouwer fixed point theorem in open strictly star-shaped sets is equivalent to a number of results closely related to the Euclidean spaces.References
[1] A. Boulkhemair and A. Chakib, On a shape derivative formula with respect to convex domains. J. Convex Anal. 21, No. 1, (2014), 67-87
[2] P. Bohl, Ueber die Bewegung eines mechanischen Systems in der N¨ahe einer Gleichgewichtslage. J. Reine Angew. Math. 127, (1904), 179-276.
[3] L. E.J. Brouwer, ¨Uber Abbildung von Mannigfaltigkeiten. (German) Math. Ann. 71 (1911), no. 1, 97–115.
[4] G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications 95. Cham: Birkh¨auser 2021.
[5] C. Gonz´alez, A. Jim´enez-Melado, and E. Llorens-Fuster, A M¨onch type fixed point theorem under the interior condition, J. Math. Anal. Appl. 352 (2009), 816–821.
[6] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, New York, 2006.
[7] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[8] J. Hadamard, Note sur quelques applications de l’indice de Kronecker. In Jules Tannery: Introduction `a la th´eorie des fonctions d’une variable (Volume 2), 2nd edition, A. Hermann & Fils, (1910), 437-477.
[9] A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge 2002.
[10] S. Kakutani, A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, (1941), 457-459
[11] B. Knaster, K. Kuratowski, and S. und Mazurkiewicz, Ein Beweis des Fixpunktsatzes f¨uur n-Dimensionale Simplexe. Fund. Math. 14, (1929), 132-137.
[12] R.B. Kellogg, T.Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results. SIAM J. Numer. Anal. 13, (1976), 473-483.
[13] J. Milnor, Analytic proofs of the ”Hairy Ball Theorem” and the Brouwer. Fixed Point Theorem Am. Math. Monthly 85, (1978), 525-527.
[14] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187–222.
[15] H. Poincar´e, Sur certaines solutions particulidres du problbme des trois corps, BuIl. Astronomique 1 (1884) 65-14, in Oeuvres de H. Poincar´e, t. VII, Gautier-Villars, Paris, (1928), 253-261.
[16] J. F. Nash, Equilibrium points in n-person games, Pro. the United States of America 36 (1950), 48-49.
[17] J. F. Nash, Noncooperative games, Annals of Mathematics, 54 (1951), 289-295.
[18] A. Jim´enez-Melado and C. H. Morales, Fixed point theorems under the interior condition, Proc. Amer. Math. Soc. 134 (2006), 501–507.
[19] E. Zeidler, Nonlinear Functional Analysis and Its Applications I. Springer, New York 1986.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lech Górniewicz; Abdelghani Ouahab (Corresponding Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.