Brouwer fixed point theorem in strictly star-shaped sets
Keywords:
Brouwer fixed point, Star-shaped, retraction, contractible, homotopy groupsAbstract
In this note, we show that the Brouwer fixed point theorem in open strictly star-shaped sets is equivalent to a number of results closely related to the Euclidean spaces.References
A. Boulkhemair and A. Chakib, On a shape derivative formula with respect to convex domains. J. Convex Anal. 21, No. 1, (2014), 67-87
P. Bohl, Ueber die Bewegung eines mechanischen Systems in der Nahe einer Gleichgewichtslage. J. Reine Angew. Math. 127, (1904), 179-276.
L. E.J. Brouwer, Uber Abbildung von Mannigfaltigkeiten. (German) Math. Ann. 71 (1911), no. 1, 97--115.
G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications 95. Cham: Birkhauser 2021.
C. Gonzalez, A. Jimenez-Melado, and E. Llorens-Fuster, A Monch type fixed point theorem under the interior condition, J. Math. Anal. Appl. 352 (2009), 816--821.
L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, New York, 2006.
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
J. Hadamard, Note sur quelques applications de l'indice de Kronecker. In Jules Tannery: Introduction a la theorie des fonctions d'une variable (Volume 2), 2nd edition, A. Hermann & Fils, (1910), 437-477.
A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge 2002.
S. Kakutani, A generalization of Brouwer's fixed point theorem. Duke Math. J. 8, (1941), 457-459
B. Knaster, K. Kuratowski and S. und Mazurkiewicz, Ein Beweis des Fixpunktsatzes fuur $n$-Dimensionale Simplexe. Fund. Math. 14, (1929), 132-137.
R.B. Kellogg, T.Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results. SIAM J. Numer. Anal. 13, (1976), 473-483.
J. Milnor, Analytic proofs of the ''Hairy Ball Theorem'' and the Brouwer. Fixed Point Theorem Am. Math. Monthly 85, (1978), 525-527.
S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187--222.
H. Poincare, Sur certaines solutions particulidres du problbme des trois corps, BuIl. Astronomique 1 (1884) 65-14, in Oeuvres de H. Poincare, t. VII, Gautier-Villars, Paris, (1928), 253-261.
J. F. Nash, Equilibrium points in $n$-person games, Pro.the United States of America 36 (1950), 48-49.
J. F. Nash, Noncooperative games, Annals of Mathematics, 54, (1951), 289-295.
A. Jimenez-Melado and C. H. Morales, Fixed point theorems under the interior condition, Proc. Amer. Math. Soc. 134 (2006), 501--507.
E. Zeidler, Nonlinear Functional Analysis and Its Applications I. Springer, New York 1986.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.