Brouwer fixed point theorem in strictly star-shaped sets

Authors

  • Lech Górniewicz Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Chopina 12/18, 87-100 Toruń, Poland
  • Abdelghani Ouahab Laboratory of Mathematics, Sidi-Bel-Abbès University, PoBox 89, 22000 Sidi-Bel-Abbès, Algeria Corresponding Author

Keywords:

Brouwer fixed point, Star-shaped, retraction, contractible, homotopy groups

Abstract

In this note, we show that the Brouwer fixed point theorem in open strictly star-shaped sets is equivalent to a number of results closely related to the Euclidean spaces.

References

A. Boulkhemair and A. Chakib, On a shape derivative formula with respect to convex domains. J. Convex Anal. 21, No. 1, (2014), 67-87

P. Bohl, Ueber die Bewegung eines mechanischen Systems in der Nahe einer Gleichgewichtslage. J. Reine Angew. Math. 127, (1904), 179-276.

L. E.J. Brouwer, Uber Abbildung von Mannigfaltigkeiten. (German) Math. Ann. 71 (1911), no. 1, 97--115.

G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications 95. Cham: Birkhauser 2021.

C. Gonzalez, A. Jimenez-Melado, and E. Llorens-Fuster, A Monch type fixed point theorem under the interior condition, J. Math. Anal. Appl. 352 (2009), 816--821.

L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Springer, New York, 2006.

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

J. Hadamard, Note sur quelques applications de l'indice de Kronecker. In Jules Tannery: Introduction a la theorie des fonctions d'une variable (Volume 2), 2nd edition, A. Hermann & Fils, (1910), 437-477.

A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge 2002.

S. Kakutani, A generalization of Brouwer's fixed point theorem. Duke Math. J. 8, (1941), 457-459

B. Knaster, K. Kuratowski and S. und Mazurkiewicz, Ein Beweis des Fixpunktsatzes fuur $n$-Dimensionale Simplexe. Fund. Math. 14, (1929), 132-137.

R.B. Kellogg, T.Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results. SIAM J. Numer. Anal. 13, (1976), 473-483.

J. Milnor, Analytic proofs of the ''Hairy Ball Theorem'' and the Brouwer. Fixed Point Theorem Am. Math. Monthly 85, (1978), 525-527.

S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), 187--222.

H. Poincare, Sur certaines solutions particulidres du problbme des trois corps, BuIl. Astronomique 1 (1884) 65-14, in Oeuvres de H. Poincare, t. VII, Gautier-Villars, Paris, (1928), 253-261.

J. F. Nash, Equilibrium points in $n$-person games, Pro.the United States of America 36 (1950), 48-49.

J. F. Nash, Noncooperative games, Annals of Mathematics, 54, (1951), 289-295.

A. Jimenez-Melado and C. H. Morales, Fixed point theorems under the interior condition, Proc. Amer. Math. Soc. 134 (2006), 501--507.

E. Zeidler, Nonlinear Functional Analysis and Its Applications I. Springer, New York 1986.

Downloads

Published

2023-03-03

Issue

Section

Articles