Remark on some non-uniformly nonlinear elliptic equations

Authors

  • Ahmed Youssfi University Sidi Mohamed Ben Abdellah, Laboratory of Applied Sciences and Innovative Technologies, National School of Applied Sciences, My Abdellah Avenue, Road Imouzer, P.O. Box 72, Fès-Principale 30 000 Fez, Morocco Corresponding Author

Keywords:

Nonlinear elliptic equations, Degenerate coercivity, Regularity, A priori estimates, Rearrangement

Abstract

We consider the Dirichlet problem for a class of nonlinear elliptic equations with degenerate coercivity whose model is
$$ {\rm div}\left(\displaystyle{\frac{|\nabla
        u|^{p-2}{\nabla}u}{(1+|u|)^{\theta(p-1)}}}\right)={\rm div}F, $$
with 0 < θ < 1 and |F| ∈ Ls (Ω). When θ is sufficiently close to 1, we prove that the solutions are not in Sobolev spaces.

References

[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., IV. Ser. 182, No.1, (2003), 53-79.

[2] A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 381-391.

[3] P. Bénilan, T. Gallouet, R. Gariepy, M. Pierre, J. L. Vazquez; An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV. Ser. 22, (1995), 240-273

[4] C. Bennett, R. Sharpley; Interpolation of operators, Academic press, Boston, (1988).

[5] A. Benkirane, A. Youssfi; Regularity for solutions of nonlinear elliptic equations with degenerate coercivity, Ricerche Mat., 56-2, (2007), 241-275.

[6] L. Boccardo, A. Dall’Aglio, L. Orsina; Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 51-81.

[7] L. Boccardo, D. Giachetti; Alcune osservazioni sulla regolarita delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche Mat., 34, (1985), 309-323.

[8] L. Boccardo, D. Giachetti; Existence results via regularity for some nonlinear elliptic problems, Comm. P.D.E., 14, 5, (1989), 663-680.

[9] E. De Giorgi; Su una teoria generale della misura (r − 1)−dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., IV. Ser. 36, (1954), 191-213.

[10] W. Fleming, R. Rishel; An integral formula for total gradient variation, Arch. Math., 11, (1960), 218-222.

[11] A. Kufner, O. John, B. Opic; Function spaces, Academia, Praha, (1977).

[12] J. Leray, J. L. Lions; Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty- Browder, Bull. Soc. Mat. France, 93, (1965), 97-107.

[13] E. Giarrusso, D. Nunziante; Regularity theorems in limit cases for solutions of linear and nonlinear elliptic equations, Rend. Inst. Mat. Univ. Trieste, 20, (1988), 39-58.

[14] G. Stampacchia; Le problème de Dirichlet pour les équations elliptiques du second ordre `a coefficients discontinus, Ann. Ist. Fourier, (Grenoble), 15, (1965), 189-258.

[15] G. Stampacchia; Équations elliptiques du second ordre `a coefficients discontinus, Montréal, Presses Univ. Montréal, (1966), (Séminaire de Mathématique supérieure, 16).

[16] G. Talenti; Linear elliptic P.D.E’s: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital., 4-B(6), (1985), 917-949.

[17] G. Talenti; Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120, IV. Ser., (1979), 159-184.

[18] G. Talenti; Elliptic equations and rearrangements, Ann. Scuola. Norm. Sup. Pisa, 3, (4), (1976), 697-718.

[19] A. Youssfi, A. Benkirane, Y. El Hadfi, On bounded solutions for nonlinear parabolic equations with degenerate coercivity, Mediterr. J. Math., 13 (5), (2016), 3029–3040

Downloads

Published

2025-05-03

Issue

Section

Articles