Remark on some non-uniformly nonlinear elliptic equations
Keywords:
Nonlinear elliptic equations, Degenerate coercivity, Regularity, A priori estimates, RearrangementAbstract
We consider the Dirichlet problem for a class of nonlinear elliptic equations with degenerate coercivity whose model is
$$ {\rm div}\left(\displaystyle{\frac{|\nabla
u|^{p-2}{\nabla}u}{(1+|u|)^{\theta(p-1)}}}\right)={\rm div}F, $$
with 0 < θ < 1 and |F| ∈ Ls (Ω). When θ is sufficiently close to 1, we prove that the solutions are not in Sobolev spaces.
References
[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., IV. Ser. 182, No.1, (2003), 53-79.
[2] A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 381-391.
[3] P. Bénilan, T. Gallouet, R. Gariepy, M. Pierre, J. L. Vazquez; An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV. Ser. 22, (1995), 240-273
[4] C. Bennett, R. Sharpley; Interpolation of operators, Academic press, Boston, (1988).
[5] A. Benkirane, A. Youssfi; Regularity for solutions of nonlinear elliptic equations with degenerate coercivity, Ricerche Mat., 56-2, (2007), 241-275.
[6] L. Boccardo, A. Dall’Aglio, L. Orsina; Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 51-81.
[7] L. Boccardo, D. Giachetti; Alcune osservazioni sulla regolarita delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche Mat., 34, (1985), 309-323.
[8] L. Boccardo, D. Giachetti; Existence results via regularity for some nonlinear elliptic problems, Comm. P.D.E., 14, 5, (1989), 663-680.
[9] E. De Giorgi; Su una teoria generale della misura (r − 1)−dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl., IV. Ser. 36, (1954), 191-213.
[10] W. Fleming, R. Rishel; An integral formula for total gradient variation, Arch. Math., 11, (1960), 218-222.
[11] A. Kufner, O. John, B. Opic; Function spaces, Academia, Praha, (1977).
[12] J. Leray, J. L. Lions; Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty- Browder, Bull. Soc. Mat. France, 93, (1965), 97-107.
[13] E. Giarrusso, D. Nunziante; Regularity theorems in limit cases for solutions of linear and nonlinear elliptic equations, Rend. Inst. Mat. Univ. Trieste, 20, (1988), 39-58.
[14] G. Stampacchia; Le problème de Dirichlet pour les équations elliptiques du second ordre `a coefficients discontinus, Ann. Ist. Fourier, (Grenoble), 15, (1965), 189-258.
[15] G. Stampacchia; Équations elliptiques du second ordre `a coefficients discontinus, Montréal, Presses Univ. Montréal, (1966), (Séminaire de Mathématique supérieure, 16).
[16] G. Talenti; Linear elliptic P.D.E’s: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital., 4-B(6), (1985), 917-949.
[17] G. Talenti; Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., 120, IV. Ser., (1979), 159-184.
[18] G. Talenti; Elliptic equations and rearrangements, Ann. Scuola. Norm. Sup. Pisa, 3, (4), (1976), 697-718.
[19] A. Youssfi, A. Benkirane, Y. El Hadfi, On bounded solutions for nonlinear parabolic equations with degenerate coercivity, Mediterr. J. Math., 13 (5), (2016), 3029–3040
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.