On estimating convergence for Picard sequences in b-metric space

Authors

  • Dušan Bajović University of Banja Luka, Faculty of Electrical Engineering, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina
  • Zoran D. Mitrović University of Banja Luka, Faculty of Electrical Engineering, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina And, Academy of Sciences and Arts of the Republic of Srpska, Bana Lazarevića 1, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina Corresponding Author
  • Ivan D. Aranđelović University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Beograd, Serbia

Keywords:

Cauchy sequence, b-metric spaces, fixed point, contraction

Abstract

In this paper, we give an estimate of d(xn, x) for a sequence {xn} in a b-metric space that satisfies the contractive condition d(xn+1, xn) ≤ λd(xn, xn−1), for all n ∈ N, where λ ∈ (0, 1). In addition, we give another proof for the convergence of a sequence {xn}. Examples of estimation for Banach’s, Kannan’s, and Reich’s fixed point theorems are given. In the end, we give some open problems in which research can be continued.

References

[1] S. Aleksić, Z. D. Mitrović, S. Radenović, S. Picard sequences in b-metric spaces, Fixed Point Theory, 21 (2020), 35-46.

[2] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 402 2013, 402 (2013). https://doi.org/10.1186/1029-242X-2013-402

[3] H. Aydi, M. F. Bota, E. Karapınar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012:88 (2012)

[4] H. Aydi, S. Czerwik, Fixed point theorems in generalized b-metric spaces, Modern Discrete Mathematics and Analysis: With Applications in Cryptography, Information Systems and Modeling. Springer, (2018), 1-9.

[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst. 30, (1989), 26-37.

[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., (1922), 3, 133-181.

[7] V. Berinde, M Pˇacurar, The early developments in fixed point theory on b-metric spaces: a brief survey and some important related aspects, Carpathian J. Math. 38, (2022), 523-538.

[8] M. Bota, A. Molnár, C. Varga, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory, 12, (2011), 21-28.

[9] J. Brzd¸ek, Comments on fixed point results in classes of function with values in a b-metric space, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, Paper No. 35, 17 p. (2022)

[10] S. Cobzaş, S. Czerwik, The completion of generalized b-metric spaces and fixed points, Fixed Point Theory, 21, (2020), 133-150.

[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1, (1993), 5-11.

[12] S. Czerwik, On b-metric spaces and Brouwer and Schauder fixed point principles, Rassias, Themistocles M. (ed.), Ap- proximation theory and analytic inequalities. Cham: Springer, 71-86 (2021)

[13] S. Czerwik, M. T. Rassias, Fixed point theorems for a system of mappings in generalized b-metric spaces, Rassias, Themis- tocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl., 154, (2019), 41-51.

[14] M. M. Day, The spaces Lp with 0 < p < 1, Bull. Amer. Math. Soc. 46, (1940), 816-823.

[15] R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8, No. 6, (2015), 1005-1013.

[16] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012, (2012), 126.

[17] M. B. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstr. Appl. Anal., Article ID 718074, 7 p. (2015)

[18] E, Karapınar, Z, D, Mitrović, A. Öztürk, S. Radenović, On a theorem of Ćirić in b-metric spaces, Rend. Circ. Mat. Palermo (2) 70, No. 1, (2021), 217-225.

[19] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, (1969)

[20] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19, (2017), 2153-2163.

[21] Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl. (2019), 21:24.

[22] H. K. Nashine, Z. Kadelburg, Generalized JS-contractions in b-metric spaces with application to Urysohn integral equations, Cho, Yeol Je (ed.) et al., Advances in metric fixed point theory and applications. Singapore: Springer, (2021), 385-408.

[23] E. A. Petrov, R. R. Salimov, Quasisymmetric mappings in b-metric spaces, J. Math. Sci., New York, 256(2021), 770-778 (2021); translation from Ukr. Mat. Visn. 18, No. 1, (2021), 60-70.

[24] A. Petruşel and G. Petruşel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory, J. Fixed Point Theory Appl. 19, (2017), 1793-1814.

[25] A. Petruşel, G. Petruşel, Coupled fixed points and coupled coincidence points via fixed point theory, in: Mathematical Analysis and Applications: Selected Topics, M. Ruzhansky, H. Dutta, R. P. Agarwal (eds.), Wiley, (2018), 661-708.

[26] A. Petruşel, G. Petruşel and B. Samet, A study of the coupled fixed point problem for operators satisfying a max-symmetric condition in b-metric spaces with applications to a boundary value problem, Miskolc Math. Notes, 17, (2016), 501-516.

[27] A. Petruşel, G. Petrusel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to a system of integral equations and a periodic boundary value problem, Fixed Point Theory, 17, (2016), 459-478.

[28] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Scalar and vectorial approaches for multi-valued fixed point and multi- valued coupled fixed point problems in b-metric spaces, J. Nonlinear Convex Anal., 17, (2016), 2049-2061.

[29] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., Paper No. 256, 11 p. (2017) DOI10.1186/s13660-017-1528-3 [30] I. M. Vulpe, D. Ostraikh, F. Khoiman, The topological structure of a quasimetric space. (Russian) Investigations in functional analysis and differential equations, "Shtiintsa", Kishinev, 137, (1981), 14-

Downloads

Published

2025-07-23

Issue

Section

Articles