On estimating convergence for Picard sequences in b-metric space
Keywords:
Cauchy sequence, b-metric spaces, fixed point, contractionAbstract
In this paper, we give an estimate of d(xn, x∗) for a sequence {xn} in a b-metric space that satisfies the contractive condition d(xn+1, xn) ≤ λd(xn, xn−1), for all n ∈ N, where λ ∈ (0, 1). In addition, we give another proof for the convergence of a sequence {xn}. Examples of estimation for Banach’s, Kannan’s, and Reich’s fixed point theorems are given. In the end, we give some open problems in which research can be continued.
References
[1] S. Aleksić, Z. D. Mitrović, S. Radenović, S. Picard sequences in b-metric spaces, Fixed Point Theory, 21 (2020), 35-46.
[2] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 402 2013, 402 (2013). https://doi.org/10.1186/1029-242X-2013-402
[3] H. Aydi, M. F. Bota, E. Karapınar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012:88 (2012)
[4] H. Aydi, S. Czerwik, Fixed point theorems in generalized b-metric spaces, Modern Discrete Mathematics and Analysis: With Applications in Cryptography, Information Systems and Modeling. Springer, (2018), 1-9.
[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst. 30, (1989), 26-37.
[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., (1922), 3, 133-181.
[7] V. Berinde, M Pˇacurar, The early developments in fixed point theory on b-metric spaces: a brief survey and some important related aspects, Carpathian J. Math. 38, (2022), 523-538.
[8] M. Bota, A. Molnár, C. Varga, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory, 12, (2011), 21-28.
[9] J. Brzd¸ek, Comments on fixed point results in classes of function with values in a b-metric space, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, Paper No. 35, 17 p. (2022)
[10] S. Cobzaş, S. Czerwik, The completion of generalized b-metric spaces and fixed points, Fixed Point Theory, 21, (2020), 133-150.
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1, (1993), 5-11.
[12] S. Czerwik, On b-metric spaces and Brouwer and Schauder fixed point principles, Rassias, Themistocles M. (ed.), Ap- proximation theory and analytic inequalities. Cham: Springer, 71-86 (2021)
[13] S. Czerwik, M. T. Rassias, Fixed point theorems for a system of mappings in generalized b-metric spaces, Rassias, Themis- tocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl., 154, (2019), 41-51.
[14] M. M. Day, The spaces Lp with 0 < p < 1, Bull. Amer. Math. Soc. 46, (1940), 816-823.
[15] R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8, No. 6, (2015), 1005-1013.
[16] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012, (2012), 126.
[17] M. B. Jleli, B. Samet, C. Vetro, F. Vetro, Fixed points for multivalued mappings in b-metric spaces, Abstr. Appl. Anal., Article ID 718074, 7 p. (2015)
[18] E, Karapınar, Z, D, Mitrović, A. Öztürk, S. Radenović, On a theorem of Ćirić in b-metric spaces, Rend. Circ. Mat. Palermo (2) 70, No. 1, (2021), 217-225.
[19] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, (1969)
[20] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19, (2017), 2153-2163.
[21] Z. D. Mitrović, A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl. (2019), 21:24.
[22] H. K. Nashine, Z. Kadelburg, Generalized JS-contractions in b-metric spaces with application to Urysohn integral equations, Cho, Yeol Je (ed.) et al., Advances in metric fixed point theory and applications. Singapore: Springer, (2021), 385-408.
[23] E. A. Petrov, R. R. Salimov, Quasisymmetric mappings in b-metric spaces, J. Math. Sci., New York, 256(2021), 770-778 (2021); translation from Ukr. Mat. Visn. 18, No. 1, (2021), 60-70.
[24] A. Petruşel and G. Petruşel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory, J. Fixed Point Theory Appl. 19, (2017), 1793-1814.
[25] A. Petruşel, G. Petruşel, Coupled fixed points and coupled coincidence points via fixed point theory, in: Mathematical Analysis and Applications: Selected Topics, M. Ruzhansky, H. Dutta, R. P. Agarwal (eds.), Wiley, (2018), 661-708.
[26] A. Petruşel, G. Petruşel and B. Samet, A study of the coupled fixed point problem for operators satisfying a max-symmetric condition in b-metric spaces with applications to a boundary value problem, Miskolc Math. Notes, 17, (2016), 501-516.
[27] A. Petruşel, G. Petrusel, B. Samet and J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to a system of integral equations and a periodic boundary value problem, Fixed Point Theory, 17, (2016), 459-478.
[28] A. Petruşel, G. Petruşel, B. Samet and J.-C. Yao, Scalar and vectorial approaches for multi-valued fixed point and multi- valued coupled fixed point problems in b-metric spaces, J. Nonlinear Convex Anal., 17, (2016), 2049-2061.
[29] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., Paper No. 256, 11 p. (2017) DOI10.1186/s13660-017-1528-3 [30] I. M. Vulpe, D. Ostraikh, F. Khoiman, The topological structure of a quasimetric space. (Russian) Investigations in functional analysis and differential equations, "Shtiintsa", Kishinev, 137, (1981), 14-
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.