Caristi's coincidence and common-fixed point theorems  in Hausdorff spaces

Authors

  • Maher Berzig Université de Tunis, École Nationale Supérieure d’Ingénieurs de Tunis, Département de Mathématiques, 1008 Tunis, Tunisia Corresponding Author

Keywords:

Caristi fixed point, b-metric, b-suprametric

Abstract

In this paper, we present a Caristi-type coincidence and common-fixed  point theorem and its dual in Hausdorff spaces. We also extend the Caristi-Jachymski and Caristi-Kirk-Saliga fixed point theorems.  Moreover, we  give a positive answer to a question of Kirk and Shahzad without assuming the standard distance axioms.

References

[1] M. Berzig. Strong b-Suprametric Spaces and Fixed Point Principles. Complex Anal. Oper. Theory 18 (2024), 1–26.

[2] M. Berzig. Nonlinear contraction in b-suprametric spaces. J. Anal. 32 (2024), 2401–2414.

[3] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241–251.

[4] S. Czerwik. Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1 (1993), 5–11.

[5] S. Czerwik. On b-metric spaces and Brower and Schauder fixed point principles. In: Approximation Theory and Analytic Inequalities, pp. 71–86. Springer 2021.

[6] N.V. Dung and V.T.L Hang. On relaxations of contraction constants and Caristi’s theorem in b-metric spaces. J. Fixed Point Theory Appl. 18 (2016), 267–284.

[7] J.R. Jachymski. Caristi’s fixed point theorem and selections of set-valued contractions. J. Math. Anal. Appl. 227 (1998), 55–67.

[8] E. Karapınar. Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory and Appl. (2011), 1–7.

[9] H. Khandani. Interpolative metrics are not new: a study of generalized contractions in b-suprametric spaces. arXiv:2506.11205 (2025), 1–11.

[10] W.A. Kirk. Caristi’s fixed point theorem and metric convexity. Colloq. Math. 361, (1976), 81–86.

[11] W.A. Kirk and L.M. Saliga. The Brézis-Browder order principle and extensions of Caristi’s theorem. Nonlinear Anal. 47 (2001), 2765–2778.

[12] W. Kirk and N. Shahzad. Fixed Point Theory in Distance Spaces. Springer, Cham, 2014.

[13] R. Miculescu, A. Mihail, Caristi-Kirk type and Boyd & Wong–Browder-Matkowski-Rus type fixed point results in b-metric spaces, Filomat 31 (2017), 4331–4340.

[14] W. Oettli and M. Théra. Equivalents of Ekeland’s principle. Bull. Aust. Math. Soc. 48 (1993), 385–392.

[15] J.P. Penot. The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10 (1986), 813–822.

[16] S. Romaguera. A theorem of Caristi-Kirk type for b-metric spaces. Fixed Point Theory 25 (2024), 371–378.

[17] T. Van An, L.Q. Tuyen and N. Van Dung. Stone-type theorem on b-metric spaces and applications. Topology and its Appl. 185 (2015), 50–64.

Downloads

Published

2025-07-24

Issue

Section

Articles