Fixed point results for multivalued $(\alpha,\mathcal{F})$-contractions on $S$-metric spaces with applications
Keywords:
Fixed point, multivalued $(\alpha,\mathcal{F})$-contraction, $\alpha$-admissible mapping, $S$-metric space.Abstract
In this paper, we obtain some fixed point results involving $\alpha$-admissibility for multi-valued $\mathcal{F}$-contractions in the framework of complete $S$-metric spaces. Appropriate illustrations are provided to support the main results. Finally, an application is developed by demonstrating the existence of a solution to an integral equation. Also, as an application, we establish the existence and uniqueness of the solutions to differential equations in the framework of fractional derivatives involving Mittag-Leffler kernals via the fixed point technique. Our results extend and generalize many well-known results in the existing literature.
References
[1] I. Altun, G. Minak and H. Dag, Multivalued F-contractions on complete metric space, J. Nonlinear Convex Anal. 16(4) (2015) 659-666.
[2] E. Ameer, M. Arshad, D. Shin and S. Yun, Common fixed point theorems of generalized multivalued (ψ − ϕ)-contractions in complete metric spaces with application, Math. 7 (2019), Article No. 194. https://doi.org/10.3390/math7020194
[3] A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernal, Thermal Sci. 20(2) (2016) 757-763.
[4] H. Aydi and E. Karapinar, Fixed point results for generalized α − ψ-contractions in metric-like spaces and applications, Electro. J. Differential Equations 133(2015) (2015) 1-15.
[5] H. Aydi and A. Felhi, Fixed points in modular spaces via α-admissible mappings and simulation functions, J. Nonlinear Sci. Appl. 9 (2016) 3686-3701.
[6] H. Aydi, E. Karapinar and H. Yazidi, Modified F-contractions via α-admissible mappings and application to integral equation, Filomat 31 (2017) 1141-1148.
[7] S. Banach, Sur les operation dans les ensembles abstraits et leur application aux equation integrals, Fund. Math. 3(1922) 133-181. https://doi.org/10.4064/fm-3-1-133-181
[8] K.M. Devi, Y. Rohen and K.A. Singh, Fixed points of modified F-contractions in S-metric spaces, J. Math. Comput. Sci. 2022, 12:197. https://doi.org/10.28919/jmcs/7716.
[9] U.C. Gairola and D. Khantwal, Some fixed point theorems for multi-valued maps on S-metric space, Jnanabha 47(II) (2017) 331-336.
[10] N. Hussain, E. Karapinar, P. Salimi and F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl. 2013 (2013) 114.
[11] K. Javed, F. Uddin, F. Adeel, M. Arshad, H. Alaeidizaji and V. Parvaneh, Fixed point results for generalized contractions in S-metric spaces, Math. Anal. Contemp. Appl. 3(2) (2021) 27-39.
[12] T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 2991 (2004) 235-241.
[13] E. Karapinar, α − ψ-Geraghty contraction type mappings and some related fixed point results, Filomat 28(1) (2014) 37-48.
[14] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and application of fractional differential equations, North Holland Math Stud, 2006.
[15] N.M. Mlaiki, α − ψ-contraction mapping on S-metric spaces, Math. Sci. Lett. 4(1) (2015) 9-12.
[16] S.B. Nadler, jr., Multi-valued contraction mappings, Proc. Amer. Math. Soc. 30 (1969) 475-488. https://projecteuclid.org/euclid.pjm/1102978504
[17] N.Y. Ozgur and N. Tas, Some new contractive mappings on S-metric spaces and their relationship with the mappings (S25), Math. Sci. 11 (2017) 7-16.
[18] V. Popa and A.-M. Patriciu, A general fixed point theorem for a sequence of multivalued mappings in S-metric spaces, Axioms 2024, 13, 670. https://doi.org/10.3390/axioms13100670
[19] A. Pourgholam and M. Sabbaghan, SH-metric spaces and fixed point theorems for multivalued weak contraction mappings, Math. Sci. 15(4) (2021) 377-385.
[20] A. Pourgholam, M. Sabbaghan and F. Taleghani, Common fixed points of single-valued and multi-valued mappings in S-metric spaces, J. Indones. Math. Soc. 28(1) (2022) 19-30.
[21] H. Qawaqneh, M.S.M. Noorani, W. Shatanawi and H. Alsamir, Common fixed points for pairs of triangular α-admissible mappings, J. Nonlinear Sci. Appl. 10 (2017) 6192-6204.
[22] V.L.A. Rosa and P. Vetro, Common fixed points for α, ψ, ϕ-contractions in generalized metric spaces, Nonlinear Anal. Model. Control 19(1) (2014) 43-54.
[23] G.S. Saluja and H.K. Nashine, Fixed point theorems on S-metric spaces for generalized F-contraction and application, TWMS J. Pure Appl. Eng. Math. 15(4) (2025) 966-981.
[24] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for (α − ψ)-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.
[25] S.G. Samko, A.A. Kilbas and O. Marichev, Fractional integrals and derivatives: theory and applications, Yverdon: Gordon and Breach, 1993.
[26] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64(3) (2012) 258-266.
[27] S. Sedghi and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66(1) (2014) 113-124.
[28] S. Sedghi, I. Altun, N. Shobe and M.A. Salahshour, Some properties of S-metric spaces and fixed point results, Kyungpook Math. J. 54(1) (2014) 113-122.
[29] T. Thaibema, Y. Rohen, T. Stephen and O.B. Singh, Fixed points of rational F-contractions in S-metric spaces, J. Math. Comput. Sci. 2022, 12:153. https://doi.org/10.28919/jmcs/7357.
[30] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. (2012), 94:2012.
[31] L. Yicheng, W. Jun and L. Zhixiang, Common fixed points of single-valued and multi-valued maps, Int. J. Math. Math. Sci. 2005 3045-3055.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gurucharan Singh Saluja

This work is licensed under a Creative Commons Attribution 4.0 International License.