Equivalents of Certain Minimal Element Principles
Keywords:
Nonlinear neutral differential equations, periodic solutions, fixed point theorem, distributed delaysAbstract
In this article, by applying our 2023 Metatheorem in ordered fixed point theory, we obtain various Minimal Element Principles with their equivalent formulations to existence theorems on minimal elements, common fixed points, common stationary points, and others. Some known theorems and new ones appear in such equivalents. Consequently, dual versions of the Ekeland principle (1972-74), the Caristi theorem (1976, 1979), works of Bae-Park (1983), Takahashi (1991), Lin-Du (2008), Cobzaş (2022), and others are substantially strengthened.References
J.S. Bae and S. Park, Remarks on the Caristi-Kirk fixed point theorem, Bull. Korean Math. Soc. 19 (1983), 57--60.
H. Brezis and F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (1976),
--364.
A. Brondsted, Fixed point and partial orders, Shorter Notes, Proc. Amer. Math. Soc. 60 (1976), 365--366.
J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241--251.
J. Caristi, Fixed point theory and inwardness conditions, Applied Nonlinear Analysis, Academic Press (1979), 479--483.
S. Cobzacs, Ekeland, Takahashi and Caristi principles in preordered quasi-metric spaces, Quaestiones Mathematicae, (2022), 1--22. DOI: 10.2989/16073606.2022.2042417
I. Ekeland, Sur les problemes variationnels, C.R. Acad. Sci. Paris 275 (1972), 1057--1059; 276 (1973), 1347--1348.
I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324--353.
J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Analysis 52 (2003), 1455--1463.
S. Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Seminar Notes 3 (1975), 229--232.
W.A. Kirk, Contraction mappings and extensions, Chapter 1, Handbook of Metric Fixed Point Theory (W.A. Kirk and B. Sims, ed.), Kluwer Academic Publ. (2001), 1--34.
J. Li, Inductive properties of fixed point sets of mappings on posets and on partially ordered topological spaces, Fixed Point Theory Appl. (2015) 2015:211 DOI 10.1186/s13663-015-0461-8
L.-J. Lin, W.-S. Du, Systems of equilibrium problems with applications to new variants of Ekeland's variational principle, fixed point theorems and parametric optimization problems, J. Glob. Optim. 40 (2008), 663--677. DOI 10.1007/s10898-007-9146-0
S. Park, On extensions of the Caristi-Kirk fixed point theorem, J. Korean Math. Soc. 19 (1983), 143--151.
S. Park, Some applications of Ekeland's variational principle to fixed point theory, in Approximation Theory and Applications (S.P. Singh, ed.), Pitman Res. Notes Math. 133 (1985), 159--172.
S. Park, Equivalent formulations of Ekeland's variational principle for approximate solutions of minimization problems and their applications, Operator Equations and Fixed Point Theorems (S.P. Singh et al., eds.), MSRI-Korea Publ. 1 (1986), 55--68.
S. Park, Equivalents of various maximum principles, Results in Nonlinear Analysis 5(2) (2022), 169--174.
S. Park, Applications of various maximum principles, J. Fixed Point Theory (2022) 2022-3, 1--23. ISSN:2052--5338.
S. Park, Equivalents of maximum principles for several spaces, Top. Algebra Appl. 10 (2022), 68--76. 10.1515/taa-2022-0113
S. Park, Equivalents of generalized Brondsted principle, J. Informatics Math. Sci. DOI: 10.13140/RG.2.2.34752.61440
S. Park, Equivalents of ordered fixed point theorems of Kirk, Caristi, Nadler, Banach, and others, Adv. Th. Nonlinear Anal. Appl. 6(4) (2022), 420--432.
S. Park, Extensions of ordered fixed point theorems, DOI: 10.13140/RG.2.2.21699.48160
S. Park, Equivalents of the Caristi fixed point theorem, DOI: 10.13140/RG.2.2.11043.32804
S. Park, Foundations of ordered fixed Point Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 61(2) (2022), 1--51.
S. Park, Applications of several minimum principles, Adv. Th. Nonlinear Anal. Appl. 7(1) (2023) 1--xx. DOI:10.13140/RG.2.2.25495.65442
J. Siegel, A new proof of Caristi's fixed point theorem, Proc. Amer. Math. Soc. 66 (1977), 54--56.
W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow, (1991), 397--406.
E. Zermelo, Neuer Beweis fur die Moglichkeit einer Wohlordnung, Math. Ann. 65 (1908), 107--128.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.