Generalized Ćirić’s contraction in quasi-metric spaces
Keywords:
Ćirić’s contraction, quasi-metric space, complete, fixed pointAbstract
Inspired by a work from P. Kumam, N.V. Dung and K. Sitytithakerngkiet [Filomat 29 (2015), 1549–1556], we investigate the problem of obtaining fixed point results for generalizations of Ćirić’s contraction in the realm of quasi-metric spaces.
References
A. Amini-Harandi, D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iran. J. Fuzzy Syst. 12 (2015), 147--153.
V. Berinde, General contractive fixed point theorems for Ciric-type almost contraction in metric spaces, Carpathian J. Math. 24 (2008), 10--19.
V. Berinde, Some remarks on a fixed point point theorem for Ciric-type almost
contractions, Carpathian J. Math. 25 (2009), 157--162.
L. Ciric, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974), 267--273.
S. Cobzacs, Functional Analysis in Asymmetric Normed Spaces. Frontiers in Mathematics, Birkhauser/Springer Basel AG, Basel, Switzerland, 2013.
P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
L.M. Garcia-Raffi, S. Romaguera, M.P. Schellekens, Applications of the complexity space to the General
Probabilistic Divide and Conquer Algorithms. J. Math. Anal. Appl. 348 (2008), 346--355.
T.L. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japon. 33 (1988), 231--236.
J. Jachymski, A contribution to fixed point theory in quasi-metric spaces, Publ. Math. Debrecen 43 (1993), 283--288.
E. Karapinar, Revisiting Ciric type nonunique fixed point theorems via interpolation, Appl. Gen. Topol. 22 (2021), 483--496.
J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
F. Kiany, A. Amini-Harandi, Fixed point theory for generalized Ciric quasi-contraction maps in metric spaces, Fixed Point Theory Appl. 2013, 2013:26.
P. Kumam, N.V. Dung, K. Sitytithakerngkiet, A generalization of Ciric fixed point theorems, Filomat 29 (2015), 1549--1556.
H.P.A. Kunzi, Nonsymmetric distances and their associated topologies: About
the origins of basic ideas in the area of asymmetric topology, In: Handbook of
the History of General Topology Vol. 3, C.E. Aull, R. Lowen, Eds. Kluwer, Dordrecht, 2001, pp. 853--968.
S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on
General Topology and Appl., Ann. New York Acad. Sci. 728, 1994, 183-197.
M. Noorwali, H.H. Alsulami, E. Karapinar, Some extensions of fixed point results over quasi-$JS$-spaces, J. Funct. Spaces (2016), 2016: 6963041.
D. Rakic, T. Dovsenovic, Z.D. Mitrovic, M. de la Sen,
S. Radenovic, Some fixed point theorems of Ciric type in fuzzy metric spaces, Mathematics 2020, 8, 297.
S. Romaguera, Contrations of Kannan-type and of Chatterjea-type on fuzzy quasi-metric spaces, Results Nonlinear Anal. 5 (2022), 347-359.
S. Romaguera, E. Checa, Continuity of contractive mappings on complete quasi-metric spaces, Math. Japon. 35 (1990), 137--139.
M. Schellekens, The Smyth completion: a common foundation for denonational
semantics and complexity analysis, Electron. Notes Theor. Comput. Sci. 1 (1995), 535-556.
A.K. Seda, Quasi-metrics and the semantics of logic programs, Fund. Inf. 29 (1997), 97--117.
A.K. Seda, P. Hitzler, Generalized distance functions in the theory of computation, Comput. J. 53 (2010), 443--464.
W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675--684.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.