Existence and uniqueness for a fractional differential equation involving Atangana-Baleanu derivative by using a new contraction
Keywords:
Atangana-Baleanu fractional derivative, orbitally complete, fixed pointAbstract
In this study, by using some new contractions, we obtain an existence and uniqueness conclusion for a fractional differential equation with Atangana-Baleanu derivative as follows: $$ \begin{array}{rl}\label{202} (_0^{ABC}D^{\kappa}\delta)(s)&=h(s,\delta(s)),~~~~~~~~~~~~~~~~~ s\in J,~0\leq\kappa\leq 1,~~~~~~~~~~~~~~~~\\ \nonumber &\delta(0)=\delta_0,~~~~~~~~~~~~~~~~~ \end{array} $$ where \(D^{\varsigma}\) is the Atangana-Baleanu derivative of order \(\varsigma\) and \(f\) is continuous with \(f(0,\hslash(0))=0\).References
[1] T.Abdeljawad, R.Agarwal, E.Karapinar, S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019)
[2] H.Afshari, D.Baleanu, Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel, Advances in Difference Equations, 2020, 140 (2020), Doi:10.1186/s13662-020-02592-2
[3] B. Alqahtani, A. Fulga, F. Jarad, E.Karapinar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel. Chaos, Solitons and Fractals, 128,(2019) 349–354, doi.org/10.1016/j.chaos.2019.08.002
[4] H.Aydi, E.Karapinar, Z.Mitrovi, T. Rashid, A remark on ”Existence and uniqueness for a neutral differential problem with unbo unded delay via fixed pointresults F-metric space”, RACSAM, 113 (2019), 3197–3206 doi:org/10.1007/s13398-019- 00690-9
[5] T.Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag- Leffler nonsingular kernel, Journal Nonlinear Science Application, 10(2017), 1098–1107
[6] V.W. Bryant, A remark on a fixed point theorem for iterated mappings, Amr. Math. Monthly, 75(1968), 399–400.
[7] M.Caputo, M. Fabrizzio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),(2015) 73-85
[8] E.F.Doungmo Goufoa, S.Kumar, S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos, Solitons and Fractals, 130, (2020), 109467
[9] W. Shatanawi, E. Karapinar, H. Aydi, A. Fulga, Wardowski type contractions with applications on Caputo type nonlinear fractional differential equashions; U.P.B. Sci. Bull., Series A, 82(2), (2020) 157-170
[10] A. Atangana, D.Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci, 20,(2016) 757-763
[11] A. Atangana, J.F. Gomez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differential. Eq., 34(5),(2018),1502–1523. doi:10.1002/num.22195
[12] D.Gopal, M. Abbas, D.P. Kumar, C. Vetro, Fixed points of α−type F−contractive mappings with an application to nonlinear fractional differential equation, Acta Mathematica Scientia 36(3), ( 2016) 957-970
[13] A.Kilbas, H.M.Srivastava , J.J. Trujillo :Theory and application of fractional differential equations. North Holland Math Stud 2006;204
[14] J.Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2)(2015), 87-92
[15] E.F.Goufo, P. Doungmo, K. Morgan, J.N.Mwambakana, Duplication in a model of rock fracture with fractional derivative without singular kernel. Open Math. 13 (2015), 839-846
[16] N. Ali Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives; Eur. Phys. J. C (2016) 76:362 DOI 10.1140/epjc/s10052-016-4209-3;
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.