Existence and uniqueness for a fractional differential equation involving Atangana-Baleanu derivative by using a new contraction
Keywords:
Atangana-Baleanu fractional derivative, orbitally complete, fixed pointAbstract
In this study, by using some new contractions, we obtain an existence and uniqueness conclusion for a fractional differential equation with Atangana-Baleanu derivative as follows: $$ \begin{array}{rl}\label{202} (_0^{ABC}D^{\kappa}\delta)(s)&=h(s,\delta(s)),~~~~~~~~~~~~~~~~~ s\in J,~0\leq\kappa\leq 1,~~~~~~~~~~~~~~~~\\ \nonumber &\delta(0)=\delta_0,~~~~~~~~~~~~~~~~~ \end{array} $$ where \(D^{\varsigma}\) is the Atangana-Baleanu derivative of order \(\varsigma\) and \(f\) is continuous with \(f(0,\hslash(0))=0\).References
T.Abdeljawad, R.Agarwal, E.Karapinar, S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019)
H.Afshari, D.Baleanu, Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel, Advances in Difference Equations, 2020, 140 (2020), Doi:10.1186/s13662-020-02592-2
B. Alqahtani, A. Fulga, F. Jarad, E.Karapinar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel. Chaos, Solitons and Fractals, 128,(2019) 349--354, doi.org/10.1016/j.chaos.2019.08.002
H.Aydi, E.Karapinar, Z.Mitrovi, T. Rashid, A remark on "Existence and uniqueness for a neutral differential problem with unbo unded delay via fixed pointresults F-metric space" , RACSAM, 113 (2019), 3197--3206 doi:org/10.1007/s13398-019-00690-9
T.Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel , Journal Nonlinear Science Application, 10(2017), 1098--1107
V.W. Bryant, A remark on a fixed point theorem for iterated mappings, Amr. Math. Monthly, 75(1968), 399--400.
M.Caputo, M. Fabrizzio, A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),(2015) 73-85
E.F.Doungmo Goufoa, S.Kumar, S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos, Solitons and Fractals, 130, (2020), 109467
W. Shatanawi, E. Karapinar, H. Aydi, A. Fulga, Wardowski type contractions with applications on Caputo type nonlinear fractional differential equashions; U.P.B. Sci. Bull., Series A, 82(2), (2020) 157-170
A. Atangana, D.Baleanu, New fractional derivative with non-local and non-singular kernel , Thermal Sci, 20,(2016) 757-763
A. Atangana, J.F. Gomez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differential. Eq., 34(5),(2018),1502--1523. doi:10.1002/num.22195
D.Gopal, M. Abbas, D.P. Kumar, C. Vetro, Fixed points of $alpha-$type $F-$contractive mappings with an application to nonlinear fractional differential equation , Acta Mathematica Scientia 36(3), ( 2016) 957-970
A.Kilbas, H.M.Srivastava , J.J. Trujillo : Theory and application of fractional differential equations. North Holland Math Stud 2006;204
J.Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2)(2015), 87-92
E.F.Goufo, P. Doungmo, K. Morgan, J.N.Mwambakana, Duplication in a model of rock fracture with fractional derivative without singular kernel. Open Math. 13 (2015), 839-846
N. Ali Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives; Eur. Phys. J. C (2016) 76:362 DOI 10.1140/epjc/s10052-016-4209-3;
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.