A Study on Tempered \((k,\psi)\)-Hilfer Fractional Operator

Authors

  • Abdelkrim Salim Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, P.O. Box 89, Sidi Bel-Abbes 22000, Algeria; Faculty of Technology, Hassiba Benbouali University of Chlef, P.O. Box 151 Chlef 02000, Algeria Corresponding Author
  • Mouffak Benchohra Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, P.O. Box 89, Sidi Bel-Abbes 22000, Algeria

Keywords:

psi-Hilfer fractional derivative, k-generalized psi-Hilfer fractional derivative, tempered fractional operators, existence, uniqueness

Abstract

his paper introduces novel definitions of the tempered \((k,\psi)\)-fractional operators and establishes their various properties. Our research focuses on applying these new findings to investigate the existence and uniqueness of solutions for a specific class of initial value problems concerning implicit nonlinear fractional differential equations and tempered \((k,\psi)\)-Hilfer fractional derivative with nonlocal condition. To achieve this, we rely on the application of pertinent fixed-point theorems. Moreover, we offer illustrative examples to showcase the practical effectiveness of our main results.

References

H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via $psi$-Hilfer fractional derivative on $b$-metric spaces. Adv. Difference Equ. 2020, Paper No. 616, 11 pp.

O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Frac. Cal. Appl. Anal. 15 (4) (2012), 700-711.

A. Almalahi and K. Panchal, Existence results of $psi$-Hilfer integro-differential equations with fractional order in Banach space, Ann. Univ. Paedagog. Crac. Stud. Math, 19 (2020), 171-192.

R. Almeida, M. L. Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, J. Comput. Appl. Math. 361 (2019), 1-12.

M. Benchohra, E. Karapinar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.

M. Benchohra, E. Karapinar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023.

M. Bouaouid, Mild solutions of a class of conformable fractional differential equations with nonlocal conditions. Acta Math. Appl. Sin. Engl. Ser. 39 (2023), 249–261.

R. G. Buschman, Decomposition of an integral operator by use of Mikusinski calculus, SIAM J. Math. Anal. 3 (1972), 83-85.

L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1990), 11-19.

Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor and K. I. Noor, Generalizations of Hermite-Hadamard like inequalities involving $chi _kappa $-Hilfer fractional integrals, Adv. Difference Equ. 2020 (2020), 594.

R. Diaz and C. Teruel, $q,k$-Generalized gamma and beta functions, J. Nonlinear Math. Phys, 12 (2005), 118-134.

T. A. Faree, S. K. Panchal, Existence of solution for impulsive fractional differential equations with nonlocal conditions by topological degree theory. Results Appl. Math. 18 (2023), 100377.

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

R. Herrmann, Fractional Calculus: An Introduction for Physicists. Singapore: World Scientific Publishing Company, 2011.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

A. A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

S. Krim, A. Salim, S. Abbas and M. Benchohra, Functional $k$-generalized $psi$-Hilfer fractional differential equations in $b$-metric spaces. Pan-Amer. J. Math. 2 (2023), 10 pages. https://doi.org/10.28919/cpr-pajm/2-5

S. Krim, A. Salim and M. Benchohra, On implicit Caputo tempered fractional boundary value problems with delay. Lett. Nonlinear Anal. Appl. 1 (1) (2023), 12-29. https://doi.org/10.5281/zenodo.7682064

K. D. Kucche, A. D. Mali, A. Fernandez and H. M. Fahad, On tempered Hilfer fractional derivatives with respect to functions and the associated fractional differential equations, Chaos, Solitons $&$ Fractals. 163 (2022), 112547.

C. Li, W. Deng and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional differential equations, Discr. Contin. Dyn. Syst. Ser. B. 24 (2019), 1989-2015.

R. Luca and A. Tudorache, On a system of Hadamard fractional differential equations with nonlocal boundary conditions on an infinite interval. Fractal Fract. 7 (6) (2023), 458.

A. D. Mali, K. D. Kucche, A. Fernandez and H. M. Fahad, On tempered fractional calculus with respect to functions and the associated fractional differential equations, Math Meth Appl Sci. 45 (17) (2022), 11134-11157.

M. Medved and E. Brestovanska, Differential Equations with Tempered $psi$-Caputo Fractional Derivative, Math. Model. Anal. 26 (2021), 631-650.

S. Mubeen and G. M. Habibullah, $k$-Fractional Integrals and Application, Int. J. Contemp. Math. Sciences 7 (2012), 89-94. 2 (2020), 55–60.

N. A. Obeidat, D. E. Bentil, New theories and applications of tempered fractional differential equations, Nonlinear Dyn. 105 (2021), 1689-1702. 5 (2020), 2629-2645.

F. Sabzikar, M. M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14-28.

A. Salim, M. Benchohra and J. E. Lazreg, Nonlocal $k$-generalized $psi$-Hilfer impulsive initial value problem with retarded and advanced arguments, Appl. Anal. Optim. 6 (2022), 21-47.

A. Salim, M. Benchohra and J. E. Lazreg, On implicit $k$-generalized $psi$-Hilfer fractional differential coupled systems with periodic conditions, Qual. Theory Dyn. Syst. 22 (2023), 46 pages. https://doi.org/10.1007/s12346-023-00776-1

A. Salim, M. Benchohra, J. E. Lazreg and J. Henderson, On $k$-generalized $psi$-Hilfer boundary value problems with retardation and anticipation. ATNAA. 6 (2022), 173-190. https://doi.org/10.31197/atnaa.973992

A. Salim, M. Benchohra, J. E. Lazreg and E. Karapinar, On $k$-generalized $psi$-Hilfer impulsive boundary value problem with retarded and advanced arguments. J. Math. Ext. 15 (2021), 1-39. https://doi.org/10.30495/JME.SI.2021.2187

A. Salim, M. Benchohra, J. E. Lazreg and G. N'Gu'er'ekata, Existence and $k$-Mittag-Leffler-Ulam-Hyers stability results of $k$-generalized $psi$-Hilfer boundary value problem. Nonlinear Studies. 29 (2022), 359–379.

A. Salim, M. Benchohra, J. E. Lazreg and Y. Zhou, On $k$-generalized $psi$-Hilfer impulsive boundary value problem with retarded and advanced arguments in Banach spaces. J. Nonl. Evol. Equ. Appl. 2022 (2023), 105-126.

A. Salim, S. Bouriah, M. Benchohra, J. E. Lazreg and E. Karapinar, A study on $k$-generalized $psi$-Hilfer fractional differential equations with periodic integral conditions. Math. Methods Appl. Sci. (2023), 1-18. https://doi.org/10.1002/mma.9056

A. Salim, J. E. Lazreg, B. Ahmad, M. Benchohra and J. J. Nieto, A study on $k$-generalized $psi$-Hilfer derivative operator, Vietnam J. Math. (2022). https://doi.org/10.1007/s10013-022-00561-8

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

B. Shiri, G. Wu and D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math. 156 (2020), 385-395.

J. V. C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $psi$-Hilfer operator, Differ. Equ. Appl. 11 (2019), 87-106.

J. V. C. Sousa and E. Capelas de Oliveira, Fractional order pseudo-parabolic partial differential equation: Ulam-Hyers stability, Bull. Braz. Math. Soc. 50 (2019), 481-496.

J. V. C. Sousa and E. Capelas de Oliveira, On the $psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72-91.

J. R Wang, Y. R. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266 (2015), 850-859.

Downloads

Published

2023-09-20

Issue

Section

Articles