A Study on Some Conformable Fractional Problems with Delay in \(b\)-Metric Spaces
Keywords:
Conformable fractional integral, delay, b-metric space, alpha-psi Geraghty contraction, fixed pointAbstract
This paper deals with some existence results for a class of conformable implicit fractional differential equations with delay in \(b\)-metric spaces. The results are based on the \(\alpha-\phi\)-Geraghty type contraction and the fixed point theory. We illustrate our results by an example in the last section.References
T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279 (2015), 57-66.
H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in $b$-metric spaces, East Asian Math. J. 32 (3) (2016), 319-332.
H. Afshari, H. Aydi, E. Karapinar, On generalized $alpha-psi-$Geraghty contractions on $b$-metric spaces, Georgian Math. J. 27(1) (2020), 9-21.
H. Afshari and E. Karapinar, A solution of the fractional differential equations in the setting of $b$-metric space, Carpathian Math. Publ. 13 (2021), 764-774. https://doi.org/10.15330/cmp.13.3.764-774
H. Afshari and E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via $psi$-Hilfer fractional derivative on $b$-metric spaces, Adv. Difference Equ. (2020), 616.
M. Benchohra, S. Bouriah, A. Salim and Y. Zhou, Fractional Differential Equations: A Coincidence Degree Approach, Berlin, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387
M. Benchohra, E. Karapinar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.
M. Benchohra, E. Karapinar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023.
M.-F. Bota, L. Guran, and A. Petrusel, New fixed point theorems on b-metric spaces with applications to coupled fixed point theory, J. Fixed Point Theo. Appl. 22 (3) (2020),74.
S. Cobzas and S. Czerwik. The completion of generalized b-metric spaces and fixed points, Fixed Point Theory 21 (1) (2020), 133-150.
S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (2) 1998, 263-276.
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.
J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
E. Karapinar, C. Chifu, Results in wt-distance over $b$-metric spaces, Math. 8 (2020).
E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in $b$-metric spaces, Math. 8 (2020). https://doi.org/10.3390/math8030388
E. Karapinar, A. Fulga, Fixed point on convex $b$-metric space via admissible mappings, TWMS J. Pure Appl. Math. 12 (2021), no. 2, 254--264.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
S. Krim, A. Salim, S. Abbas and M. Benchohra, On implicit impulsive conformable fractional differential
equations with infinite delay in $b$-metric spaces. Rend. Circ. Mat. Palermo (2). (2022), 1-14. https://doi.org/10.1007/s12215-022-00818-8
S. Krim, A. Salim, S. Abbas and M. Benchohra, Functional $k$-generalized $psi$-Hilfer fractional differential equations in $b$-metric spaces. Pan-Amer. J. Math. 2 (2023), 10 pages. https://doi.org/10.28919/cpr-pajm/2-5
S. Krim, A. Salim and M. Benchohra, Nonlinear contractions and Caputo tempered implicit fractional differential equations in $b$-metric spaces with infinite delay. Filomat. 37 (22) (2023), 7491-7503. https://doi.org/10.2298/FIL2322491K
S. Krim, A. Salim and M. Benchohra, Nonlinear contractions and Caputo tempered impulsive implicit fractional differential equations in $b$-metric spaces. Math. Morav. 27 (2) (2023), 1-24.
K. D. Kucche, J. J. Nieto, V. Venktesh, V. Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dynam. Syst. 28 (2020), 1–17.
S. K. Panda, E. Karapinar, and A. Atangana. A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space, Alexandria Engineering J. 59 (2) (2020), 815-827.
A. Salim and M. Benchohra, A study on tempered $(k,psi)$-Hilfer fractional operator, Lett. Nonlinear Anal. Appl. 1 (3) (2023), 101-121. https://doi.org/10.5281/zenodo.8361961
A. Salim, S. Krim, S. Abbas and M. Benchohra, On deformable implicit fractional differential equations in $b$-metric spaces. J. Math. Ext. 17 (2023), 1-17. https://doi.org/10.30495/JME.2023.2468
A. Salim, S. Krim and M. Benchohra, On implicit boundary value problems with deformable fractional derivative and delay in $b$-metric spaces. Appl. Anal. Optim. 7 (2023), 1-16. http://yokohamapublishers.jp/online2/opaao/vol7/p1.html
A. Salim, S. Krim and M. Benchohra, Three-point boundary value problems for implicit Caputo tempered fractional differential equations in $b$-metric spaces. Eur. J. Math. Appl. 3 (2023), Article ID 16. https://doi.org/10.28919/ejma.2023.3.16
A. Salim, S. Krim, J. E. Lazreg and M. Benchohra, On Caputo tempered implicit fractional differential equations in $b$-metric spaces. Analysis. 43 (2) (2023), 129-139. https://doi.org/10.1515/anly-2022-1114
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (4) (2011), 391-401.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.