A Study on Some Conformable Fractional Problems with Delay in b-Metric Spaces
Keywords:
Conformable fractional integral, delay, b-metric space, alpha-psi Geraghty contraction, fixed pointAbstract
This paper deals with some existence results for a class of conformable implicit fractional differential equations with delay in \(b\)-metric spaces. The results are based on the \(\alpha-\phi\)-Geraghty type contraction and the fixed point theory. We illustrate our results by an example in the last section.References
[1] T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279 (2015), 57-66.
[2] H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J. 32 (3) (2016), 319-332.
[3] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ−Geraghty contractions on b-metric spaces, Georgian Math. J. 27(1) (2020), 9-21.
[4] H. Afshari and E. Karapinar, A solution of the fractional differential equations in the setting of b-metric space, Carpathian Math. Publ. 13 (2021), 764-774. https://doi.org/10.15330/cmp.13.3.764-774.
[5] H. Afshari and E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Adv. Difference Equ. (2020), 616.
[6] M. Benchohra, S. Bouriah, A. Salim and Y. Zhou, Fractional Differential Equations: A Coincidence Degree Approach, Berlin, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387
[7] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023.
[8] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023.
[9] M.-F. Bota, L. Guran, and A. Petrusel, New fixed point theorems on b-metric spaces with applications to coupled fixed point theory, J. Fixed Point Theo. Appl. 22 (3) (2020),74.
[10] S. Cobzas and S. Czerwik. The completion of generalized b-metric spaces and fixed points, Fixed Point Theory 21 (1) (2020), 133-150.
[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (2) 1998, 263-276.
[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.
[13] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
[14] E. Karapinar, C. Chifu, Results in wt-distance over b-metric spaces, Math. 8 (2020).
[15] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in b-metric spaces, Math. 8 (2020). https://doi.org/10.3390/math8030388
[16] E. Karapinar, A. Fulga, Fixed point on convex b-metric space via admissible mappings, TWMS J. Pure Appl. Math. 12 (2021), no. 2, 254–264.
[17] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[18] S. Krim, A. Salim, S. Abbas and M. Benchohra, On implicit impulsive conformable fractional differential equations with infinite delay in b-metric spaces. Rend. Circ. Mat. Palermo (2). (2022), 1-14. https://doi.org/10.1007/s12215-022-00818-8
[19] S. Krim, A. Salim, S. Abbas and M. Benchohra, Functional k-generalized ψ-Hilfer fractional differential equations in b-metric spaces. Pan-Amer. J. Math. 2 (2023), 10 pages. https://doi.org/10.28919/cpr-pajm/2-5
[20] S. Krim, A. Salim and M. Benchohra, Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay. Filomat. 37 (22) (2023), 7491-7503. https://doi.org/10.2298/FIL2322491K
[21] S. Krim, A. Salim and M. Benchohra, Nonlinear contractions and Caputo tempered impulsive implicit fractional differential equations in b-metric spaces. Math. Morav. 27 (2) (2023), 1-24.
[22] K. D. Kucche, J. J. Nieto, V. Venktesh, V. Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dynam. Syst. 28 (2020), 1–17.
[23] S. K. Panda, E. Karapinar, and A. Atangana. A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended b-metric space, Alexandria Engineering J. 59 (2) (2020), 815-827.
[24] A. Salim and M. Benchohra, A study on tempered (k, ψ)-Hilfer fractional operator, Lett. Nonlinear Anal. Appl. 1 (3) (2023), 101-121. https://doi.org/10.5281/zenodo.8361961
[25] A. Salim, S. Krim, S. Abbas and M. Benchohra, On deformable implicit fractional differential equations in b-metric spaces. J. Math. Ext. 17 (2023), 1-17. https://doi.org/10.30495/JME.2023.2468
[26] A. Salim, S. Krim and M. Benchohra, On implicit boundary value problems with deformable fractional derivative and delay in b-metric spaces. Appl. Anal. Optim. 7 (2023), 1-16. http://yokohamapublishers.jp/online2/opaao/vol7/p1.html
[27] A. Salim, S. Krim and M. Benchohra, Three-point boundary value problems for implicit Caputo tempered fractional differential equations in b-metric spaces. Eur. J. Math. Appl. 3 (2023), Article ID 16. https://doi.org/10.28919/ejma. 2023.3.16
[28] A. Salim, S. Krim, J. E. Lazreg and M. Benchohra, On Caputo tempered implicit fractional differential equations in b-metric spaces. Analysis. 43 (2) (2023), 129-139. https://doi.org/10.1515/anly-2022-1114
[29] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[30] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[31] A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (4) (2011), 391-401.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.