Implicit Caputo-Katugampola Fractional Problems with Infinite Delay and Impulses
Keywords:
Caputo-Katugampola fractional order derivative, infinite delay, Schaefer's fixed point theorem, Nonlocal impulsiveAbstract
This paper deals with some existence results for a class of Caputo-Katugampola implicit impulsive fractional differential equations with infinite delay. The results are based on the Schaefer's fixed point theorem. We illustrate our results by an example in the last section.References
[1] H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J. 32 (3) (2016), 319-332.
[2] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ−Geraghty contractions on b-metric spaces, Georgian Math. J. 27(1) (2020), 9-21.
[3] R. Almeida, A. B. Malinowska and T. Odzijewicz, Fractional differential equations with dependence on the Caputo- Katugampola derivative, J. Comput Nonlinear Dynam. 11 (6) (2016), 11 pages.
[4] Y. Arioua, B. Basti, N. Benhamidouche, Initial value problem for nonlinear implicit fractional differential equations with Katugampola derivative, Appl. Math. E-Notes 19 (2019), 397-412.
[5] M. Benchohra, F. Bouazzaoui, E. Karapınar and A. Salim, Controllability of second order functional random differential equations with delay. Mathematics. 10 (2022), 16pp. https://doi.org/10.3390/math10071120
[6] M. Benchohra, S. Bouriah, A. Salim and Y. Zhou, Fractional Differential Equations: A Coincidence Degree Approach, Berlin, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387
[7] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
[8] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
[9] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
[10] A. Heris, A. Salim, M. Benchohra and E. Karapınar, Fractional partial random differential equations with infinite delay. Results in Physics. (2022). https://doi.org/10.1016/j.rinp.2022.105557
[11] E. Karapinar, C. Chifu, Results in wt-distance over b-metric spaces, Math. 8 (2020).
[12] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in b-metric spaces, Math. 8 (2020). https://doi.org/10.3390/math8030388
[13] E. Karapinar, A. Fulga, Fixed point on convex b-metric space via admissible mappings, TWMS J. Pure Appl. Math. 12 (2021), no. 2, 254–264.
[14] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (2014), 1–15.
[15] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), 860–865.
[16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
[17] S. Krim, A. Salim, S. Abbas and M. Benchohra, On implicit impulsive conformable fractional differential equations with infinite delay in b-metric spaces. Rend. Circ. Mat. Palermo (2). (2022), 1-14. https://doi.org/10.1007/s12215-022-00818-8
[18] S. Krim, A. Salim and M. Benchohra, On implicit Caputo tempered fractional boundary value problems with delay. Lett. Nonlinear Anal. Appl. 1 (1) (2023), 12-29. https://doi.org/10.5281/zenodo.7682064
[19] K. D. Kucche, J. J. Nieto, V. Venktesh, V. Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dynam. Syst. 28 (2020), 1–17.
[20] A. Salim, S. Abbas, M. Benchohra and E. Karapınar, A Filippov’s theorem and topological structure of solution sets for fractional q-difference inclusions. Dynam. Systems Appl. 31 (2022), 17-34. https://doi.org/10.46719/dsa202231.01.02
[21] A. Salim, B. Ahmad, M. Benchohra and J. E. Lazreg, Boundary value problem for hybrid generalized Hilfer fractional differential equations, Differ. Equ. Appl. 14 (2022), 379-391. http://dx.doi.org/10.7153/dea-2022-14-27
[22] A. Salim and M. Benchohra, A study on tempered (k, ψ)-Hilfer fractional operator, Lett. Nonlinear Anal. Appl. 1 (3) (2023), 101-121. https://doi.org/10.5281/zenodo.8361961
[23] A. Salim, M. Benchohra, J. E. Lazreg and G. N’Gu´er´ekata, Existence and k-Mittag-Leffler-Ulam-Hyers stability results of k-generalized ψ-Hilfer boundary value problem. Nonlinear Studies. 29 (2022), 359–379.
[24] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[25] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[26] A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (4) (2011), 391-401.
[27] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Letters in Nonlinear Analysis and its Applications

This work is licensed under a Creative Commons Attribution 4.0 International License.