Other approaches related to Huygens trigonometric inequalities

Authors

  • Abd Raouf Chouikha University Paris-Sorbonne, University Paris-Nord, 4, Cour des Quesblais 35430 Saint-Pere, France Corresponding Author

Keywords:

Trigonometric functions, Sine function, Inequalities

Abstract

In this article, we propose some refinements of Huygens inequality. We establish new bounds for Huygens and Neuman-Sandor inequalities. The analysis results show that our bounds are tighter than the older ones.

References

M. Abramowitz-I. Stegun Handbook of mathematical functions, Appl. Math. series 55. Washington, 1972.

C.-P. Chen and W.-S. Cheung, Sharpness of Wilker and Huygens type inequalities, J of Inequalities and Applications 2012, 2012:72.

C.-P. Cheng and R. B. Paris On the Wilker and Huygens-type Inequalities, 2016. https://arxiv.org/pdf/1602.00436.pdf.

Chouikha A.R., New sharp inequalities related to classical trigonometric inequalities, J. of Inequalities and Special Functions, vol 11, n 4, 2021.

D’Aniello C., On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo 43, 329-332 (1994).

Gradshteyn, I., Ryzhik, I.: Table of Integrals Series and Products, 8th edn. Academic Press, San Diego (2015)

B. Malesevic , T. Lutovac, M. Rasajski and C. Mortici Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Advances in Difference Equations,2018:90, (2018) https://doi.org/10.1186/s13662-018-1545-7

B. Malesevic, M. Nenezic, L. Zhu, B. Banjac and M. Petrovic Some new estimates of precision of Cusa-Huygens and Huygens approximations Appl. Anal. Discrete Math. 15 (2021), 243-259. available on line at http://pefmath.etf.rs. https://doi.org/10.2298/AADM190904055M.

Christiaan Huygens, De circuli magnitudine inventa, Theoreme VII Proposition VII, Oeuvres com pletes de Christiaan Huygens. Travaux de mathematiques pures, / publ. par la Société hollandaise des sciences, p. 95-132. 1652-1656.

Mortici, C.: The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 14(3), 535-541 (2011)

E. Neuman and J. Sandor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl., 13, 4 (2010), 715-723.

M. Rasajski, T. Lutovac, B. Malesevic, Sharpening and generalizations of Shafer-Fink and Wilker type inequalities: a new approach , J. Nonlinear Sci. Appl., 11 (2018), 885-893.

S.-H. Wu and H. M. Srivastava, A weighted and exponential generalization of Wilker’s inequality and its applications, Integral Transforms and Spec. Funct., 18, 8 (2007), 525-535.

J. S. Sumner, A. A. Jagers, M. Vowe and J. Anglesio, Inequalities involving trigonometric functions, Amer. Math. Monthly 98 (1991), 264-267.

J. B. Wilker, Problem E3306, The American Mathematical Monthly 96, 1 (1989), 55. doi:10.2307/2323260.

S.-H. Wu, H. M. Srivastava: A further refinement of Wilker’s inequality, Integral Transforms Spec. Funct. 19:9-10 (2008), 757-765

Downloads

Published

2023-12-23

Issue

Section

Articles