More about basic contractions of Suzuki type on quasi-metric spaces

Authors

  • Salvador Romaguera Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain Corresponding Author

Keywords:

Fixed point, contraction of Suzuki type, protected quasi-metric, complete quasi-metric space

Abstract

In this paper we present new results concerning the quasi-metric extension of a renowned and successful generalization of Banach's contraction principle obtained by Suzuki in an article published at 2008 [Proc. Amer. Math. Soc. 136 (2008), 1861--1869]. This will be done by using the recent notion of a protected quasi-metric joint with a suitable modification of a contraction condition that we previously discussed in an article published in 2022 [Mathematics 2022, 10, 3931].

References

E.S. Ahmed, A. Fulga, The Gornicki-Proinov type contraction on quasi-metric spaces. AIMS Math. 6 (2021), 8815–8834.

C. Alegre, Quasi-metric properties of the dual cone of an asymmetric normed space, Results Math. (2022) 77:178.

M.A. Alghamdi, N. Shahzad, O. Valero, On fixed point theory in topological posets, extended quasi-metrics and an application to asymptotic complexity analysis of algorithms, Fixed Point Theory Appl. 2015, 2015, 179.

B. Ali, H. Ali, T. Nazir, Z. Ali, Existence of fixed points of Suzuki-type contractions of quasi-metric spaces, Mathematics 2023, 11, 4445.

R. Arnau, N. Jonard-Perez, E.A. Sanchez Perez, Extension of semi-Lipschitz maps on non-subadditive quasi-metric spaces: New tools for Artificial Intelligence, Quaest. Math. (2023) https://doi.org/10.2989/16073606.2023.2193706, to appear.

L. Ciri'c, Semi-continuous mappings and fixed-point theorems in quasi metric spaces, Publ. Math. Debrecen 54 (1999), 251–261.

S. Cobzacs, Functional Analysis in Asymmetric Normed Spaces. Frontiers in Mathematics, Birkhauser/Springer Basel AG, Basel, Switzerland, 2013.

R. Engelking, General Topology, 2nd ed.; Sigma Series Pure Mathematics; Heldermann Verlag: Berlin, Germany, 1989.

H. Falciani, E.A. Sanchez Perez, Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs, Mach. Learn. 111 (2022), 1765–1797.

P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.

A. Fulga, E. Karapınar, G. Petrusel, On hybrid contractions in the context of quasi-metric spaces, Mathematics 2020, 8, 675.

L.M. Garcia-Raffi, S. Romaguera, M.P. Schellekens, Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. J. Math. Anal. Appl. 348 (2008), 346-355.

E.L. Ghasab, H. Majani, E. Karapinar, G.S. Rad, New fixed point results in F-quasi-metric spaces and an application, Adv. Math. Phys. 2020, 2020, 9452350.

J. Goubault-Larrecq, Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations. Topol. Appl. 2022, 295, 107673.

J. Goubault-Larrecq, Kantorovich-Rubinstein quasi-metrics II: Hyperspaces and powerdomains. Topol. Appl. 2022, 305, 107885.

T.L. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japon. 33 (1988), 231-236.

J. Jachymski, A contribution to fixed point theory in quasi-metric spaces, Publ. Math. Debrecen 43 (1993), 283–288.

J.L. Kelley, General Topology; University Series in Higher Mathematics; Van Nostrand. Princeton, NJ, USA, 1955.

H.P.A. Kunzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, In: Handbook of

the History of General Topology. Vol. 3, C.E. Aull, R. Lowen, Eds. Kluwer, Dordrecht, 2001, pp. 853-968.

S. Romaguera, Basic contractions of Suzuki-type on quasi-metric spaces and fixed point results, Mathematics 2022, 10, 3931.

S. Romaguera, Generalized Ciric’s contraction in quasi-metric spaces, Lett. Nonlinear Anal. Appl. 1 (2023), 24–32.

S. Romaguera,On protected quasi-metrics, Axioms 2024, 13, 58.

M. Schellekens, The Smyth completion: a common foundation for denonational semantics and complexity analysis, Electron. Notes Theor. Comput. Sci. 1 (1995), 535-556.

A.K. Seda, Quasi-metrics and the semantics of logic programs, Fund. Inf. 29 (1997), 97-117.

A.K. Seda, P. Hitzler, Generalized distance functions in the theory of computation, Comput. J. 53 (2010), 443-464.

T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869.

W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.

Downloads

Published

2024-02-18

Issue

Section

Articles