The Banach contraction principle: generalizations, extensions and its inverse
Keywords:
Fixed point technique, contraction, (generalized) metric space, general topologyAbstract
In this work, we give several generalizations and extensions of the Banach contraction principle. Its inverse is also studied. The extension is based on weaker topologies. Particularly, we focus on partial metric spaces and b-metric spaces.
References
[1] H. Aydi, B. Samet, M. De la Sen, A fixed point theorem for non-negative functions, AIMS Mathematics, 9(10) (2024), 29018-29030.
[2] S. Banach, Sur les op´ erations dans les ensembles abstraits et leur application aux ´ equations int´ egrales. Fundam. Math. 3, (1922), 133-181.
[3] C. Bessaga, On the converse of the Banach fixed-point principle, Colloq. Math. 7 (1959), 4143.
[4] D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc.of the American Math. Soc., 20(2) (1969), 458-464.
[5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Transactions of the American Math. Soc., 215 (1976), 241-251.
[6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5-11.
[7] W.S. Du, F. Khojasteh, New results and generalizations for approximate fixed point property and their applications, Abstract and Applied Analysis, 2014, Article ID 581267, (2014) 9 pages.
[8] M. Fr´ echet, Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, (1906) 1-74.
[9] S. Hana, J. F. Wu, D. Zhang, Properties and principles on partial metric spaces, Topology and its Applications, 230(2017), 7798.
[10] J. Jachymski, The contraction principle for mappings on a metric space with graph, Proc. Amer. Math. Soc. 136 4 (2008) 1359-1373.
[11] R. Kannan, Some results on fixed points. Bull. Cal. Math. Soc. 62 (1968), 71-76.
[12] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bul. of the Australian Math. Soc., 30 (1) (1984), 19.
[13] F. Khojasteh, S. Shukla, S. Radenovi´ c, A new approach to the study of fixed point theorems via simulation functions, Filomat 96 (2015), 1189-1194.
[14] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.
[15] W.A. Kirk, Caristi’s fixed point theorem and metric convexity, Colloquium Mathematicum, 36(1), (1976),8186.
[16] P. Kumam, N.V. Dung, V.T. Le Hang, Some Equivalences between Cone b-Metric Spaces and b-Metric Spaces, Abstract and Applied Analysis, 2013, Article ID 573740, (2013), 8 pages.
[17] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 62 (1977), 344-348
[18] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., 728, (1994), 183197.
[19] A. Meir, E. Keeler, A theorem on contraction mappings, J. of Math. Analysis and App., 28 (1969), 326329.
[20] J.J. Nieto, R. Rodrigues-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223239.
[21] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. tiint. Ser. Mat. Univ. Bacau, 7 (1997), 129-133.
[22] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc. 132 (2004), 1435-1443.
[23] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α − ψ-contractive type mappings, Nonlinear Anal., 75 (2012) 2154–2165.
[24] J. Schauder, Der Fixpunktsatz in Funktionalrumen, Studia Math. 2 (1930), 171180.
[25] P.V. Subrahmanyam, Completeness and fixed-points, Monatshefte fur Mathematik, 80(4), (1976), 325330.
[26] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness. Pro. the American Math. Soc., 136(5) (2008), 1861-1869
[27] T. Suzuki, Basic inequality on a b-metric space and its applications, J. of Inequalities and App., 2017 (2017),256.
[28] A. Tarski, A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285309
[29] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012, (2012), 94.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.