Meir-Keeler type mappings on b-metric spaces
Keywords:
Fixed point theory, b-metric, admissible mapping, Meir-Keeler ContractionAbstract
In this study, we aim to present Meir-Keeler contraction mapping results on b-metric spaces. We collect and combine considerable Meir-Keeler fixed point results on b-metric spaces and generalized b-metric spaces. We have also presented the fixed point studies in b-metric spaces via admissible mappings.
References
1] T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory and App., 2013(1), (2013) 1-10.
[2] M. Abduletif Mamud, K. Koyas Tola, Fixed point theorems for generalized (α,φ)-MeirKeeler type hybrid contractive mappings via simulation function in b-metric spaces. Fixed Point Theory and Alg. for Sci. Eng., 2024(1), (2024), 4.
[3] M.A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces. J. of Inequalities and App., 2013, (2013), 1-25.
[4] H. Aydi, R. Bankovi, I. Mitrovi, M. Nazam, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discrete Dynamics in Nature and Society, 2018, (2018), Article ID 4745764.
[5] H. Aydi, M. Jellali, E. Karapınar, Common fixed points for generalized α-implicit contractions in partial metric spaces: consequences and application. RACSAM, 109(2),(2015), 367-384.
[6] H. Aydi, S. Czerwik, Fixed point theorems in generalized b-metric spaces. In Modern discrete mathematics and analysis (pp. 1-9). (2018), Springer, Cham.
[7] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales. Fund. math, 3(1), (1922), 133-181.
[8] I.A. Bakhtin, The contraction principle in quasimetric spaces. In: Functional Analysis, 30, 26-37. Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, (1989) [in Russian]
[9] V. Berinde, Sequences of operators and fixed points in quasimetric spaces. Stud. Univ. Babes-Bolyai Math, 16(4), (1996), 23-27.
[10] Berinde, V. (1993). Generalized contractions in quasimetric spaces. In Seminar on Fixed Point Theory (Vol. 3, No. 9, pp. 3-9).
[11] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Math. Debrecen, 57(1-2), (2000), 3137.
[12] Boriceanu, M., Bota, M., Petruel, A. Multivalued fractals in b-metric spaces. Central Eu. J. Math., 8(2), (2010), 367-377.
[13] D.W. Boyd, J.S. Wong, On nonlinear contractions. Proceedings of the American Math. Soc., 20(2), (1969), 458-464.
[14] S.C. Chu, J.B. Diaz, Remarks on a generalization of Banach’s principle of contraction mappings. J. of Math. Analysis and App., 11, (1965), 440-446.
[15] L.B. Ciri´c, A new fixed-point theorem for contractive mappings. Publ. de l’Institut Math.. Nouvelle Srie, 30, (1981), 25-27.
[16] L.B. Ciric, B. Fisher, Fixed point theory. Contraction mapping principle. Faculty of Mechanical Eng., University of Belgrade, (2003), Serbia.
[17] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(2), (1998),
263276.
[18] S. Czerwik, Contraction mappings in b-metric spaces. Acta Math. Inf. Uni. Ostraviensis, 1(1), (1993) 5-11.
[19] P. Debnath, Set-valued Meir-Keeler, Geraghty and Edelstein type fixed point results in b-metric spaces. Rendiconti del
Circolo Matematico di Palermo Series 2, 70(3), (2021), 1389-1398.
[20] M. Edelstein, On fixed and periodic points under contractive mappings. J. of the London Math. Society, 1(1), (1962), 74-79.
[21] R. George, S. Radenovic, K.P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles. J. Nonlinear Sci.
Appl, 8(6), (2016), 1005-1013.
[22] N. Gholamian, M. Khanehgir, Fixed points of generalized Meir-Keeler contraction mappings in b-metric-like spaces. Fixed
Point Theory and App., 2016, (2016), 1-19.
[23] S. Gulyaz, E. Karapınar, I. Erhan, Generalized α-Meir-Keeler Contraction Mappings on Branciari b-metric Spaces. Filomat,
31(17) (2017).
[24] N. Hussain, J.R. Roshan, V. Parvaneh, Z. Kadelburg, (2014). Fixed Points of Contractive Mappings in bMetricLike Spaces. The Sci. World J., 2014(1), (2014), 471827.
[25] E. Karapınar, C. Chifu, (2020). Results in wt-distance over b-metric spaces. Mathematics, 8(2), (2020), 220.
[26] E. Karapınar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized-metric spaces. J. of Func.
Spaces, Article ID 3264620. (2018)
[27] E. Karapınar, P. Kumam, P. Salimi, (2013). On α − ψ-Meir-Keeler contractive mappings. Fixed Point Theory and App., 2013(1), (2013), 1-12.
[28] E. Karapınar, A. Fulga, P. Kumam, Revisiting the Meir-Keeler Contraction via Simulation Function. Filomat, 34(5), (2020), 1645-1657.
[29] E. Karapınar, R.P. Agarwal, S.S. Yeilkaya, C. Wang, Fixed-point results for MeirKeeler type contractions in partial metric
spaces: A survey. Mathematics, 10(17), (2022), 3109.
[30] E. Karapnar, A. Fulga, S.S. Yeilkaya, Interpolative MeirKeeler Mappings in modular metric spaces. Mathematics, 10(16), (2022), 2986.
[31] F. Khojasteh, S. Shukla, S. Radenovi, A new approach to the study of fixed point theory for simulation functions. Filomat, 29(6), (2015), 1189-1194.
[32] N. Lu, F. He, N. Van Dung, On a question concerning Meir-Keeler contractions in complete b-metric spaces. J. of Math.
Anal. and App., 527(2), (2023), 127470.
[33] A. Meir, E. Keeler, A theorem on contraction mappings. J. of Math. Analysis and App., 28(2),(1969), 326-329.
[34] M.V. Pavlovic, S.N. Radenovic, A note on the Meir-Keeler theorem in the context of b-metric spaces. Vojnotehnicki
Glasnik/Military Technical Courier, 67(1), (2019), 1-12.
[35] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory
and App., 2014(1), (2014), 1-12.
[36] E. Rakotch, A note on contractive mappings. Proceedings of the American Math. Soc., 13(3), (1962), 459-465.
[37] I.A. Rus, Generalized contractions and applications. (2001), Cluj University Press.
[38] I.A. Rus, Picard operators and applications, Sci. Math. Japon., 58, (2003), 191219.
[39] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α−ψ-contractive type mappings. Nonlinear Analysis, 75(4), (2012),
2154-2165.
[40] B. Samet, C. Vetro, H. Yazidi, A fixed point theorem for a Meir-Keeler type contraction through rational expression. J.
Nonlinear Sci. Appl, 6(3), (2013), 162-169.
[41] W. Sintunavarat, Nonlinear integral equations with new admissibility types in b-metric spaces. J. of Fixed Point Theory
and App., 18(2), (2016), 397-416.
[42] S.L. Singh, C. Bhatnagar, S.N. Mishra, Stability of iterative procedures for multivalued maps in metric spaces. Demonstratio Math. 38(4), (2005), 905916.
[43] R. Tiwari, N. Sharma, Fixed points theorems for generalized (α,φ)-Meir-Keeler Gregus quadratic type hybrid contractionmappings via simulation function in b-metric spaces. Adv. Fixed Point Theory, 14 (2024).
[44] D.W. Zheng, P. Wang, N. Citakovic, N. Meir-Keeler theorem in b-rectangular metric spaces. J. Nonlinear Sci. Appl, 10(4), (2017), 1786-1790.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.