Implicit Impulsive Conformable Fractional Differential Equations with Infinite Delay
Keywords:
Conformable fractional integral, conformable fractional order derivative, infinite delay, Schaefer's fixed point theorem, nonlocal conditionsAbstract
This paper deals with some existence results for a class of conformable implicit fractional differential equations with instantaneous impulses infinite delay. The results are based on Schaefer's fixed point theorem. We illustrate our results by an example in the last section.
References
[1] S. Abbas, B. Ahmad, M. Benchohra and A. Salim, Fractional Difference, Differential Equations and Inclusions: Analysis and Stability, Morgan Kaufmann, Cambridge, 2024. https://doi.org/10.1016/C2023-0-00030-9
[2] S. Abbas, M. Benchohra and G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[3] S. Abbas, M. Benchohra and G. M. N’Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
[4] T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57-66 (2015).
[5] A. Anguraja and M. Latha Maheswari, Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions, J. Nonlinear Sci. Appl. 5 (2012), 271-280.
[6] M. Benchohra, F. Bouazzaoui, E. Karapinar and A. Salim, Controllability of second order functional random differential equations with delay. Mathematics. 10 (2022), 16pp. https://doi.org/10.3390/math10071120
[7] M. Benchohra and Z. Boutefal, impulsive differential equations of fractional order with infinite delay, J. Fract. Calc. Appl. 4 (2013), 209-223.
[8] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-26928-8
[9] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Fractional Differential Equations: New Advancements for Gener- alized Fractional Derivatives, Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-34877-8
[10] F. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27-35.
[11] A. Chauhan, J. Dabas, M. Kumar, Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay, Electron. J. Differential Equations. 2012 (2012), 1-13.
[12] W. S. Chung, Fractional newton mechanics with fractional derivative, Journal of Computational and Applied Mathematics. 290 (2015), 150-158.
[13] C. Derbazi, H. Hammouche, A. Salim and M. Benchohra, Measure of noncompactness and fractional Hybrid differential equations with Hybrid conditions. Differ. Equ. Appl. 14 (2022), 145-161. http://dx.doi.org/10.7153/dea-2022-14-09
[14] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
[15] J. Henderson and C. Tisdell, Topological transversality and boundary value problems on time.
[16] A. Heris, A. Salim, M. Benchohra and E. Karapinar, Fractional partial random differential equations with infinite delay. Results in Physics. (2022). https://doi.org/10.1016/j.rinp.2022.105557
[17] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics. 264 (2014), 65-70.
[18] S. Krim, S. Abbas, M. Benchohra and M.A. Darwish, Boundary value problem for implicit Caputo–Fabrizio fractional differential equations, Int. J. Difference Equ. 15 (2) (2020), 493-510.
[19] K. D. Kucche, J. J. Nieto, V. Venktesh, V. Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dynam. Syst. 28 (2020), 1–17.
[20] N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad and M. Benchohra, On implicit fractional q-difference equations: Analysis and stability. Math Meth Appl Sci. 2 (2022), 1-23. https://doi.org/10.1002/mma.8417
[21] J. E. Lazreg, M. Benchohra and A. Salim, Existence and Ulam stability of k-Generalized ψ-Hilfer Fractional Problem. J. Innov. Appl. Math. Comput. Sci. 2 (2022), 01-13.
[22] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Modern Physics Letters B. 33 (2019).
[23] A. Salim, M. Benchohra, J. R. Graef and J. E. Lazreg, Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations. J. Fixed Point Theory Appl. 24 (2022), 14 pp. https://doi.org/10.1007/s11784-021-00920-x
[24] A. Salim, M. Benchohra, J. E. Lazreg and J. Henderson, On k-generalized ψ-Hilfer boundary value problems with retardation and anticipation. Advances in the Theory of Nonlinear Analysis and its Application. 6 (2022), 173-190. https://doi.org/10.31197/atnaa.973992
[25] A. Salim, M. Benchohra, J. E. Lazreg and E. Karapinar, On k-generalized ψ-Hilfer impulsive boundary value problem with retarded and advanced arguments. J. Math. Ext. 15 (2021), 1-39. https://doi.org/10.30495/JME.SI.2021.2187
[26] A. Salim, M. Benchohra, J. E. Lazreg and G. N’Guérékata, Existence and k-Mittag-Leffler-Ulam-Hyers stability results of k-generalized ψ-Hilfer boundary value problem. Nonlinear Studies. 29 (2022), 359–379.
[27] A. Salim, J. E. Lazreg, B. Ahmad, M. Benchohra and J. J. Nieto, A Study on k-Generalized ψ-Hilfer Derivative Operator, Vietnam J. Math. (2022). https://doi.org/10.1007/s10013-022-00561-8
[28] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian.
[29] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
[30] A. N. Vityuk and A. V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (4) (2011), 391-401.
[31] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Letters in Nonlinear Analysis and its Applications
This work is licensed under a Creative Commons Attribution 4.0 International License.